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UNIT-I:  

Basic Result: Subgraphs - Degrees of Vertices - Paths and Connectedness 

- Automorphism of a simple graph - Line graphs - Operations on graphs - Graph 

Products. 

Chapter 1: Section 1.1 to 1.9. 

 

1.1 Graph Products Introduction: 

 Graphs serve as mathematical models to analyze many concrete real- 

world problems successfully. Certain problems in physics, chemistry, 

communication science, computer technology, genetics, psychology, 

sociology, and linguistics can be formulated as problems in graph theory. 

Also, many branches of mathematics, such as group theory, matrix theory, 

probability, and topology, have close connections with graph theory. 

 Some puzzles and several problems of a practical nature have been 

instrumental in the development of various topics in graph theory. The famous 

Kö nigsberg bridge problem has been the inspiration for the development of 

Eulerian graph theory. The challenging Hamiltonian graph theory has been 

developed from the “Around the World” game of Sir William Hamilton. The 

theory of acyclic graphs was developed for solving problems of electrical 

networks, and the study of “trees” was developed for enumerating isomers of 

organic compounds. The well-known four-color problem formed the very 

basis for the development of planarity in graph theory and combinatorial 

topology. Problems of linear programming and operations research (such as 

maritime traffic problems) can be tackled by the theory of flows in  networks. 

Kirkman’s schoolgirl problem and scheduling problems are examples of 

problems that can be solved by graph colorings. The study of simplicial 
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complexes can be associated with the study of graph theory. Many more such 

problems can be added to this list. 

1.2 Basic Concepts: 

 Consider a road network of a town consisting of streets and street 

intersections. Figure (1.1 a) represents the road network of a city. Figure (1.1 

b) denotes the corresponding graph of this network, where the street 

intersections are represented by points, and the street joining a pair of 

intersections is represented by an arc (not necessarily a straight line). The 

road network in Figure (1.1) is a typical example of a graph in which 

intersections and streets are, respectively, the “vertices” and “edges” of the 

graph. (Note that in the road network in Figure (1.1 a), there are two streets 

joining the intersections 𝐽7 and 𝐽8; and there is a loop street starting and 

ending at 𝐽2.) 

 

Figure (1.1 a) A road network and Figure (1.1 b) the graph corresponding to 

the road network in Figure (1.1 a). 
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                  Figure (1.1 b) 

 

 

 

 

 

 

 

 

 

 

 

We now present a formal definition of a graph. 

 

Definition-1.2.1: 

 A 𝑔𝑟𝑎𝑝ℎ is an ordered triple 𝐺 = (𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺), where (𝑉(𝐺) is a 

nonempty set, 𝐸(𝐺) is a set disjoint from 𝑉(𝐺); and 𝐼𝐺  is an “incidence” 

relation that associates with each element of 𝐸(𝐺), an unordered pair of 

elements (same or distinct) of V(G),  Elements of 𝑉(𝐺) are called the 

vertices (or nodes or points) of 𝐺; and elements of 𝐸(𝐺) are called the 

edges (or lines) of 𝐺, (V.G) and 𝐸(𝐺) are the vertex set and edge set of 

𝐺, respectively. If, for the edge 𝑒 of 𝐺; 𝐼𝐺(𝑒) = {𝑢, 𝑣}, we write 

𝐼𝐺(𝑒) = 𝑢𝑣. 

v1 v3 

v4 v6 

v5 

v7 v8 

v2 
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Example-1.2.2: 

  If 𝑉(𝐺 = {𝑣1, 𝑣2, 𝑣3 , 𝑣4, 𝑣5}, 𝐸(𝐺 = {𝑒1 , 𝑒2 , 𝑒3, 𝑒4, 𝑒5} and  

𝐼𝐺 is given by 𝐼𝐺(𝑒1) = {𝑣1, 𝑣5}, 𝐼𝐺(𝑒2) = {𝑣2, 𝑣3}, 𝐼𝐺(𝑒3) =

{𝑣2, 𝑣4}, 𝐼𝐺(𝑒4) = {𝑣2, 𝑣5}, 𝐼𝐺(𝑒5) = {𝑣2, 𝑣5} then 𝐺 = (𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺) 

is a graph. 

 

 

 

 

                    

 

  

  

 

                              

                                               Figure 1.2 

 

Diagrammatic Representation of a Graph-1.2.3: 

 Each graph can be represented by a diagram in the plane. In this diagram, 

each vertex of the graph is represented by a point, with distinct vertices being 

represented by distinct points. Each edge is represented by a simple “Jordan” 

arc joining two (not necessarily distinct) vertices. The diagrammatic 

representation of a graph aids in visualizing many concepts related to graphs 

and the systems of which they are models. In a diagrammatic representation 

of a graph, it is possible that two edges intersect at a point that is not 

necessarily a vertex of the graph. 

𝑒2 

 

𝑣1 𝑣5 

 

𝑣2 

 

𝑣4 

 

𝑣3 

 

𝑒4 

 

𝑒5 

 

𝑒1 

𝑒3 

 

𝑒6 
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Definition-1.2.4: 

 If 𝐼𝐺(𝑒) = {𝑢, 𝑣}, then the vertices 𝑢 and 𝑣 are called the end vertices or 

ends of the edge 𝑒. Each edge is said to join its ends; in this case, we say 

that 𝑒 is incident with each one of its ends. Also, the vertices 𝑢 and 𝑣 are then 

incident with 𝑒. A set of two or more edges of a graph 𝐺 is called a set of 

multiple or parallel edges if they have the same pair of distinct ends. If 𝑒 is an 

edge with end vertices 𝑢 and 𝑣, we write 𝑒 = 𝑢𝑣. An edge for which the two 

ends are the same is called a loop at the common vertex. A vertex 𝑢 is a 

neighbor of 𝑣 in 𝐺, if 𝑢𝑣 is an edge of 𝐺, and 𝑢 ≠ 𝑣. The set of all 

neighbors of 𝑣 is the open neighborhood of  𝑣 or the neighbor set of 𝑣; and 

is denoted by 𝑁(𝑣);  the set 𝑁(𝑣) = 𝑁(𝑣) ∪ {𝑣} is the closed neighborhood 

of 𝑣 in 𝐺. When 𝐺 must be explicit, these open and closed neighborhoods are 

denoted by 𝑁(𝑣) and 𝑁[𝑣], respectively. Vertices 𝑢 and 𝑣 are adjacent to 

each other in 𝐺 if, and only if, there is an edge of 𝐺 with 𝑢 and 𝑣 as its ends. 

Two distinct edges 𝑒 and 𝑓 are said to be adjacent if, and only if, they have a 

common end vertex. A graph is simple if it has no loops and no multiple edges. 

Thus, for a simple graph 𝐺, the incidence function 𝐼𝐺 is one-to-one. Hence, 

an edge of a simple graph is identified with the pair of its ends. A simple 

graph therefore may be considered as an ordered pair (𝑉(𝐺), 𝐸(𝐺)), where 

𝑉(𝐺) is a nonempty set and 𝐸(𝐺) is a set of unordered pairs of elements of 

𝑉(𝐺) (each edge of the graph being identified with the pair of its ends). 

    Example-1.2.5:  

In the graph of Figure 1.2, edge 𝑒3 = 𝑣2𝑣4, edges 𝑒4 and 𝑒5 form multiple 

    edges, 𝑒6 is a loop at 𝑣3, 𝑁(𝑣2) = {𝑣3, 𝑣4, 𝑣5}, 𝑁(𝑣3) = {𝑣2}, 𝑁[𝑣2] =

    {𝑣3, 𝑣4, 𝑣5}, and 𝑁[𝑣2] = 𝑁(𝑣2) ∪ {𝑣2}. Further, 𝑣2 and 𝑣5 are adjacent  

    vertices and 𝑒3 and 𝑒4 are adjacent edges. 
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                                                                                           e1   

 

 

 

 

 

 

 

Figure 1.3 A graph diagram e1 is a loop and { e2, e3} is a set of multiple edges 

 

 

 

 

 

                                                        

                                                     Figure 1.4 A simple graph  

 

 

 

 

              
 

 

 

 

                                   Figure 1.5 A labelled graph 𝐺 and an unlabeled graph 𝐻 
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Definition-1.2.6: 

 A graph is called finite if both 𝑉(𝐺) and 𝐸(𝐺) are finite. A graph that 

    is not finite is called an infinite graph. Unless otherwise stated, all graphs 

    considered in this text are finite. Throughout this book, we denote by 𝑛(𝐺)  

    and 𝑚(𝐺) the number of vertices and edges of the graph 𝐺, respectively. The  

    number 𝑛(𝐺) is called the order of 𝐺 and 𝑚(𝐺) is the size of 𝐺. When explicit  

    reference to the graph G is not needed, 𝑉(𝐺), 𝐸(𝐺), 𝑛(𝐺) and 𝑚(𝐺) will be  

    denoted simply by 𝑉, 𝐸, 𝑛 and 𝑚 respectively. 

Figure  is a graph with loops and multiple edges, while Figure 1.4    

represents a simple graph. 

  Remark 1.2.7: 

 The representation of graphs on other surfaces such as a sphere, a torus, 

or a Mö bius band could also be considered. Often a diagram of a graph is 

identified with the graph itself. 

Definition 1.2.8: 

 A graph is said to be labeled if its 𝑛 vertices are distinguished from one 

another by labels such as 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛, (see Figure 1.5). 

 Note that there are three different labeled simple graphs on three vertices 

each having two edges, whereas there is only one unlabeled simple graph of 

the same order and size (see Figure 1.6). 

 

Isomorphism of Graphs 1.2.9. A graph isomorphism, which we now define, 

is a concept similar to isomorphism in algebraic structures. Let 𝐺 =

(𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺) and 𝐺 = (𝑉(𝐻), 𝐸(𝐻), 𝐼𝐻) be two graphs. A graph 

isomorphism from 𝐺 to 𝐻 is a pair (∅, 𝜃), where ∅: 𝑉(𝐺) → 𝑉(𝐻) and 
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' 

𝜃: 𝐸(𝐺) → 𝐸(𝐻) are bijections with the property that 𝐼𝐺(𝑒) = {𝑢, 𝑣} if 

and only if 𝐼𝐻(𝜃(𝑒)) = {∅(𝑢), ∅(𝑣)}. If (∅, 𝜃) is a graph isomorphism, the 

pair of inverse mappings (∅−1, 𝜃−1) is also a graph isomorphism. Note that 

the bijection ∅ satisfies the condition that 𝑢 and 𝑣 are end vertices of an edge 

𝑒 of 𝐺 if and only if ∅(𝑢) and  ∅(𝑣) are end vertices of the edge ∅(𝑒) in 𝐻.  

It is clear that isomorphism is an equivalence relation on the set of all graphs. 

Isomorphism between graphs is denoted by the symbol ≅ (as in algebraic 

structures). 

 

Simple Graphs and Isomorphisms 1.2.10. If graphs 𝐺 and 𝐻 are simple, 

any bijection ∅: 𝑉(𝐺) → 𝑉(𝐻) such that 𝑢 and 𝑣 are adjacent in 𝐺 if and 

only if ∅(𝑢) and  ∅(𝑣) are adjacent in 𝐻 induces a bijection 𝜃: 𝐸(𝐺) →

𝐸(𝐻) satisfying the condition that 𝐼𝐺(𝑒) = {𝑢, 𝑣} if and only if 𝐼𝐻(𝜃(𝑒)) =

{∅(𝑢), ∅(𝑣)} Hence,  ∅ itself is referred to as an isomorphism in the case 

of simple graphs 𝐺 and 𝐻. Thus, if 𝐺 and 𝐻 are simple graphs, an 

isomorphism from 𝐺 to 𝐻 is a bijection   ∅: 𝑉(𝐺) → 𝑉(𝐻)  such that 𝑢 and 
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𝑣 are adjacent in 𝐺 if and only if ∅(𝑢) and  ∅(𝑣) are adjacent in 𝐻. Figure 

1.7 exhibits two isomorphic graphs 𝑃 and 𝐻, where 𝑃 is the well-known 

Petersen graph. We observe that 𝑃 is a simple graph. 

Exercise 2.1: 

Let 𝐺 and 𝐻 be simple graphs and let ∅: 𝑉(𝐺) → 𝑉(⊂ 𝐻) be a bijection 

such that 𝑢𝑣 ∈ 𝐸(𝐺) implies that ∅(𝑢)∅(𝑣) ∈ 𝐸(𝐻). Show by means of 

an example that ∅ need not be an isomorphism from 𝐺 to 𝐻. 

 

 

Definition 1.2.11.  

A simple graph 𝐺 is said to be complete if every pair of distinct vertices 
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2 2 

of 𝐺 are adjacent in 𝐺. Any two complete graphs each on a set of 𝑛 vertices are 

isomorphic; each such graph is denoted by 𝐾𝑛(Fig. 1.8). 

 A simple graph with 𝑛 vertices can have at most (
𝑛

2
) =

𝑛(𝑛−1)

2
 edges.  

The complete graph  𝐾𝑛 has the maximum number of edges among all 

simple graphs with 𝑛 vertices. At the other extreme, a graph may possess no 

edge at all. Such a graph is called a totally disconnected graph (see Fig. 1.9). 

Thus, for a simple graph 𝐺 with 𝑛 vertices, we have 0 ≤ 𝑚(𝐺) ≤
𝑛(𝑛−1)

2
. 

Definition 1.2.12:  

 A graph is trivial if its vertex set is a singleton and it contains no edges. 

A graph is bipartite if its vertex set can be partitioned into two nonempty subsets 

𝑋 and 𝑌 such that each edge of 𝐺 has one end in 𝑋 and the other in 𝑌. The 

pair (𝑋, 𝑌) is called a bipartition of the bipartite graph. The bipartite graph 𝐺 

with bipartition (𝑋, 𝑌) is denoted by 𝐺(𝑋, 𝑌). A simple bipartite graph 

𝐺(𝑋, 𝑌) is complete if each vertex of 𝑋 is adjacent to all the vertices of 𝑌.  If 

𝐺(𝑋, 𝑌) is complete with |𝑋| = 𝑝 and |𝑌| = 𝑞, then 𝐺(𝑋, 𝑌) is denoted 

by𝐾𝑝,𝑞. A complete bipartite graph of the form 𝐾1,𝑞 is called a star (see Figure 

1.10). 
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Definition 1.2.13: 

Let 𝐺 be a simple graph. Then the complement 𝐺𝑐 of 𝐺 is defined by 

taking 𝑉(𝐺𝑐) = 𝑉(𝐺) and making two vertices 𝑢 and 𝑣 adjacent in 𝐺𝑐 if 

and only if they are non-adjacent in G (see Figure 1.11). It is clear that 𝐺𝑐 is 

also a simple graph and that (𝐺𝑐)𝑐 = 𝐺. 

If |𝑉(𝐺)| = 𝑛, then clearly, |𝐸(𝐺)| + |𝐸(𝐺𝑐)| = |𝐸(𝐾𝑛)| =
𝑛(𝑛−1)

2
. 

Definition 1.2.13: 

 A simple graph G is called self-complementary if 𝐺 ≅ 𝐺𝑐. 

For example, the graphs shown in Figure 1.12 are self-complementary. 

    

    Exercise 2.2: 

 Find the complement of the following simple graph: 
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1.3 Subgraphs: 

Definition 1.3.1: 

        A graph 𝐻 is called a subgraph of 𝐺 if  𝑉(𝐻) ⊆ 𝑉(𝐺), 𝐸(𝐻) ⊆ 𝐸(𝐺),  

   and 𝐼𝐻 is the restriction 𝐼𝐺 to 𝐸(𝐻). If 𝐻 is a subgraph of 𝐺, then 𝐺 is  

   said to be a super graph of 𝐻. A subgraph 𝐻 of a graph 𝐺 is a proper  

   subgraph of 𝐺 if either 𝑉(𝐻) ≠ 𝑉(𝐺) or 𝐸(𝐻) ≠ 𝐸(𝐺). 

 

 A subgraph 𝐻 of 𝐺 is said to be an induced subgraph of 𝐺 if each edge  

    of 𝐺 having its ends in 𝑉(𝐻) is also an edge of 𝐻. 

 

          A subgraph 𝐻 of 𝐺 is a spanning subgraph of 𝐺 if 𝑉(𝐻) = 𝑉(𝐺). The   

     induced subgraph of 𝐺 with vertex set 𝑆 ⊆ 𝑉(𝐺) is called the subgraph of 𝐺  

     induced by 𝑆 and is denoted 𝐺[𝑆].  

 

      Let 𝐸′ be a subset of 𝐸 and let 𝑆 denote the subset of 𝑉 consisting 

     of all the end vertices in 𝐺 of edges in 𝐸′. Then the graph (𝑆, 𝐸′, 𝐼𝐺/𝐸′)  is  

     the subgraph of 𝐺 induced by the edge set 𝐸′ of 𝐺. It is denoted by 𝐺[𝐸′]  

     (see Figure 1.13). Let 𝑢 and 𝑣 be vertices of a graph 𝐺. By 𝐺 + 𝑢𝑣, we mean  

     the graph obtained by adding a new edge 𝑢𝑣 to 𝐺. 

 

  Definition 1.3.2: 

     A clique of 𝐺 is a complete subgraph of G: A clique of G is a maximal 

clique of G if it is not properly contained in another clique of G (see Figure 

1.13). 
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Definition 1.3.3: 

     Deletion of vertices and edges in a graph: Let 𝐺 be a graph, 𝑆 a proper 

subset of the vertex set 𝑉, and 𝐸′ a subset of 𝐸. The subgraph 𝐺[𝑉\𝑆] is 

said to be obtained from 𝐺 by the deletion of 𝑆. This subgraph is denoted 

by 𝐺 − 𝑆. If  𝑆 = {𝑣}, 𝐺 − 𝑆 is simply denoted by 𝐺 − 𝑣. The spanning 

subgraph of 𝐺  with the edge set 𝐸\𝐸′ is the subgraph obtained from 𝐺  by 

deleting the edge subset 𝐸′. This subgraph is denoted by 𝐺 − 𝐸′. Whenever 

𝐸′ = {𝑒}, 𝐺 − 𝐸′ is simply denoted by 𝐺 − 𝑒. Note that when a vertex is 

deleted from 𝐺 all the edges incident to it are also deleted from 𝐺, whereas 

the deletion of an edge from 𝐺 does not affect the vertices of 𝐺 (see Figure 

1.14). 
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     21 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

1.4 Degrees of Vertices: 

Definition 1.4.1: 

Let 𝐺 be a graph and 𝑣 ∈ 𝑉. The number of edges incident at 𝑣 in 𝐺 is 

called the degree (or valency) of the vertex 𝑣 in 𝐺 and is denoted by 𝑑𝐺(𝑣), or 

simply 𝑑(𝑣) when 𝐺 requires no explicit reference. A loop at 𝑣 is to be counted 

twice in computing the degree of 𝑣. The minimum (respectively, maximum) of 

the degrees of the vertices of a graph 𝐺 is denoted by 𝛿(𝐺) or 𝛿 

(respectively, ∆(𝐺) or ∆). A graph 𝐺 is called 𝑘-regular if every vertex of 𝐺 

has degree 𝑘. A graph is said to be regular if it is 𝑘-regular for some non-

negative integer 𝑘. In particular, a 3-regular graph is called a cubic graph. 
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Definition 1.4.2: 

A spanning 1-regular subgraph of 𝐺 is called a 1-factor or a perfect 

matching of 𝐺. For example, in the graph 𝐺 of Figure 1.15, each of the pairs 

{𝑎𝑏, 𝑐𝑑} and {𝑎𝑑, 𝑏𝑐} is a 1-factor of 𝐺. 

Definition 1.4.3: 

A vertex of degree 0 is an isolated vertex of 𝐺. A vertex of degree 1 is 

called a pendant vertex of 𝐺, and the unique edge of 𝐺 incident to such a vertex 

of 𝐺 is a pendant edge of 𝐺. A sequence formed by the degrees of the vertices 

of 𝐺, when the vertices are taken in the same order, is called a degree sequence 

of 𝐺. It is customary to give this sequence in the nonincreasing or nondecreasing 

order, in which case the sequence is unique. 

In the graph 𝐺 of Fig. 1.16, the numbers within the parentheses indicate 

the degrees of the corresponding vertices. In 𝐺, 𝑣7 is an isolated vertex, 𝑣6 is a 

pendant vertex, and 𝑣5𝑣6 is a pendant edge. The degree sequence of 𝐺 is  

(0, 1, 2, 2, 4, 4, 5). 

 The very first theorem of graph theory was due to Leonhard Euler (1707–

1783). This theorem connects the degrees of the vertices and the number of 

edges of a graph. 

 

Theorem 1.4.4 (Euler). The sum of the degrees of the vertices of a graph is 

equal to twice the number of its edges. 

Proof: 

If 𝑒 = 𝑢𝑣 is an edge of 𝐺, 𝑒 is counted once while counting the degrees 

of each of 𝑢 and 𝑣 (even when 𝑢 = 𝑣). Hence, each edge contributes 2 to the 

sum of the degrees of the vertices. Thus, the 𝑚 edges of 𝐺 contribute 2𝑚 to 
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the degree sum. 

 

Remark 1.4.5:   

If 𝑑 = 𝑑1, 𝑑2, … , 𝑑𝑛  is the degree sequence of 𝐺, then the above theorem 

gives the equation ∑ 𝑑𝑖 = 2𝑚𝑛
𝑖=1 , where 𝑛 and 𝑚 are the order and the size of  

𝐺, respectively. 

 

 Corollary 1.4.6: 

 In any graph 𝐺, the number of vertices of odd degree is even. 

Proof:  
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 Let 𝑉1 and 𝑉2 be the subsets of vertices of 𝐺 with odd and even degrees, 

respectively. By Theorem 1.4.4, 

 2𝑚(𝐺) = ∑ 𝑑𝐺(𝑣) =𝑣∈𝑉 ∑ 𝑑𝐺(𝑣) +𝑣∈𝑉1
∑ 𝑑𝐺(𝑣)𝑣∈𝑉2

. 

As 2𝑚(𝐺) and ∑ 𝑑𝐺(𝑣)𝑣∈𝑉2
 are even, ∑ 𝑑𝐺(𝑣)𝑣∈𝑉1

 is even. Since for each 

𝑣 ∈ 𝑉1, 𝑑𝐺(𝑣) is odd, |𝑉1| must be even. 

 

Exercise 4.1. Show that if 𝐺 and 𝐻 are isomorphic graphs, then each pair 

of corresponding vertices of 𝐺 and 𝐻 has the same degree. 

Exercise 4.2. Let (𝑑1, 𝑑2, … , 𝑑𝑛) be the degree sequence of a graph and 𝑟 be  

positive integer. Show that ∑ 𝑑𝑖
𝑟𝑛

𝑖=1  is even. 

 

Definition 1.4.7: 

Graphical sequences: A sequence of nonnegative integers 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛) 

is called graphical if there exists a simple graph whose degree sequence is 

𝑑. Clearly, a necessary condition for 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛) to be graphical is that 

∑ 𝑑𝑖
𝑟𝑛

𝑖=1  is even and  𝑑1 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛. These conditions, however, are not 

sufficient, as Example 1.4.8 shows. 

 

Example 1.4.8:  

The sequence 𝑑 = (7, 6, 3, 3, 2, 1, 1, 1) is not graphical even though 

each term of 𝑑 is a nonnegative integer and the sum of the terms is even. Indeed, 

if 𝑑 were graphical, there must exist a simple graph 𝐺 with eight vertices whose 

degree sequence is 𝑑. Let 𝑣0 and 𝑣1 be the vertices of 𝐺 whose degrees are 7 and 

6, respectively. Since 𝐺 is simple, 𝑣0 is adjacent to all the remaining vertices of 

𝐺, and 𝑣1, besides 𝑣0, should be adjacent to another five vertices. This means that 

in 𝑉 − {𝑣0, 𝑣1} there must be at least five vertices each of degree at least 2 but 

this is not the case. 
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Exercise 4.3:  

If 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛) is any sequence of non-negative integers with ∑ 𝑑𝑖
𝑛
𝑖=1  

even, show that there exists a graph (not necessarily simple) with 𝑑 as its 

degree sequence. 

 We present a simple application whose proof just depends on the degree 

sequence of a graph. 

 

Example 1.4.9:  

In any group of 𝑛 persons (𝑛 ≥ 2), there are at least two with the same 

number of friends. 

Proof: 

 Denote the 𝑛 persons by 𝑣1, 𝑣2, … , 𝑣𝑛. Let 𝐺 be the simple graph with 

vertex set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} in which 𝑣𝑖  and 𝑣𝑗 are adjacent if and only if the 

corresponding persons are friends. Then the number of friends of 𝑣𝑖 is just the 

degree of 𝑣𝑖 in G: Hence, to solve the problem, we must prove that there are two 

vertices in 𝐺 with the same degree. If this were not the case, the degrees of the 

vertices of 𝐺 must be 0, 1, 2, … , (𝑛 − 1) in some order. However, a vertex of 

degree (𝑛 − 1)  must be adjacent to all the other vertices of 𝐺, and consequently 

there cannot be a vertex of degree 0 in 𝐺. This contradiction shows that the 

degrees of the vertices of 𝐺 cannot all be distinct, and hence at least two of 

them should have the same degree. 

 

Exercise 4.3:  

Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges. Assume that each vertex of 𝐺 is 

of degree either 𝑘 or 𝑘 + 1. Show that the number of vertices of degree 𝑘 in 

𝐺 is (𝑘 + 1)𝑛 − 2𝑚. 
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1.5 Paths and Connectedness: 

Definition 1.5.1: 

 A walk in a graph 𝐺 is an alternating sequence 𝑊: 𝑣0𝑒1𝑣1𝑒2𝑣2 … 𝑒𝑝𝑣𝑝  

of vertices and edges beginning and ending with vertices in which 𝑣𝑖−1 and 𝑣𝑖 

are the ends of 𝑒𝑖; 𝑣0 is the origin and 𝑣𝑝 is the terminus of 𝑊. The walk 𝑊 is 

said to join 𝑣0 and 𝑣𝑝; it is also referred to as a 𝑣0 − 𝑣𝑝 walk. If the graph is 

simple, a walk is determined by the sequence of its vertices. The walk is closed 

if 𝑣0 = 𝑣6 and is open otherwise. A walk is called a trail if all the edges 

appearing in the walk are distinct. It is called a path if all the vertices are distinct. 

Thus, a path in 𝐺 is automatically a trail in G: When writing a path, we usually 

omit the edges. A cycle is a closed trail in which the vertices are all distinct. The 

length of a walk is the number of edges in it. A walk of length 0 consists of just 

a single vertex. 

Example 1.5.2: 

 In the graph of Figure 1.17, 𝑣5𝑒7𝑣1𝑒1𝑣2𝑒4𝑣4𝑒5𝑣1𝑒7𝑣5𝑒7𝑣5𝑒9𝑣6 is a walk 

but not a trail (as edge 𝑒7 is repeated) 𝑣1𝑒1𝑣2𝑒2𝑣3𝑒3𝑣2𝑒1𝑣1 is a closed walk; 

𝑣1𝑒1𝑣2𝑒4𝑣4𝑒5𝑣1𝑒7𝑣5 is a trail; 𝑣6𝑒8𝑣1𝑒1𝑣2𝑒2𝑣3 is a path and 

𝑣1𝑒1𝑣2𝑒4𝑣4𝑒6𝑣5𝑒7𝑣1 is a cycle. Also, 𝑣6𝑣1𝑣2𝑣3 is a path, and 𝑣1𝑣2𝑣4𝑣5𝑣6𝑣1 is 

a cycle in this graph. A cycle is enclosed by ordinary parentheses. 
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Definition 1.5.3: 

 A cycle of length 𝑘 is denoted by 𝐶𝑘. Further, 𝑃𝑘  denotes a path on 𝑘 

vertices. In particular, 𝐶3 is referred to as a triangle, 𝐶4 as a square, and 𝐶5 

as a pentagon. If 𝑃 = 𝑣0𝑒1𝑣1𝑒2𝑣2 … 𝑒𝑘𝑣𝑘 is a path, then 𝑃−1 =

𝑣𝑘𝑒𝑘𝑣𝑘−1𝑒𝑘−1𝑣𝑘−2 … 𝑣1𝑒1𝑣0 is also a path and 𝑃−1 is called the inverse of the 

path P: The subsequence 𝑣𝑖𝑒𝑖+1𝑣𝑖+1 … 𝑒𝑗𝑣𝑗  of 𝑃  is called the 𝑣𝑖 − 𝑣𝑗   section 

of 𝑃. 

 

Definition 1.5.4: 

Let 𝐺 be a graph. Two vertices 𝑢 and 𝑣 of 𝐺 are said to be connected 

if there is a 𝑢 − 𝑣 path in 𝐺. The relation “connected” is an equivalence 

relation on 𝑉(𝐺). Let 𝑉1, 𝑉2, … , 𝑉𝜔 be the equivalence classes. The subgraphs 

𝐺[𝑉1], 𝐺[𝑉2], . . . , 𝐺[𝑉𝜔]  are called the components of  𝐺.  If  𝜔 = 1,  the graph 

𝐺 is connected; otherwise, the graph 𝐺 is disconnected with 𝜔 ≥ 2 

components (see Figure 1.18). 
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Definition 1.5.5: 

The components of 𝐺 are clearly the maximal connected sub-graphs of 

𝐺. We denote the number of components of 𝐺 by 𝜔(𝐺). Let 𝑢 and 𝑣 be two 

vertices of 𝐺. If 𝑢 and 𝑣 are in the same component of 𝐺, we define 𝑑(𝑢, 𝑣) to 

be the length of a shortest 𝑢 − 𝑣 path in 𝐺; otherwise, we define 𝑑(𝑢, 𝑣) to be 

∞. If 𝐺 is a connected graph, then 𝑑 is a distance function or metric on 

𝑉(𝐺);  that is, 𝑑(𝑢, 𝑣) satisfies the following conditions: 

(i) 𝑑(𝑢, 𝑣) ≥ 0 and 𝑑(𝑢, 𝑣) = 0 if and only if 𝑢 =  𝑣. 

(ii) 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) 

(iii) 𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑤) + 𝑑(𝑤, 𝑣) for every w in V(G). 

 

Exercise 5.1: 

Prove that the function 𝑑 defined above is indeed a metric on (G). 

Exercise 5.2. In the following graph, find a closed trail of length 7 that is not a 

cycle. 

 

Proposition 1.5.6. If G is simple and 𝛿 ≥
𝑛−1

2
, then G is connected. 

Proof: Assume the contrary.  

Then G has at least two components, say 𝐺1, 𝐺2. 

Let 𝑣 be any vertex of 𝐺1. 

   As 𝛿 ≥
𝑛−1

2
, 𝑑(𝑣) ≥

𝑛−1

2
.  

   All the vertices adjacent to 𝑣 in 𝐺 must belong to 𝐺1. 
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2 

2 

    

Hence, 𝐺1 contains at least  𝑑(𝑣) + 1 ≥
𝑛−1

2
+ 1 =

𝑛+1

2
 vertices. 

   Similarly, 𝐺2 contains at least 
𝑛+1

2
 vertices. 

   Therefore 𝐺 has at least 
𝑛+1

2
+

𝑛+1

2
= 𝑛 + 1 vertices,  

which is a contradiction. 

 

Exercise 5.3. Give an example of a nonsimple disconnected graph with 

 𝛿 ≥
𝑛−1

2
. 

Exercise 5.4. Show by means of an example that the condition 𝛿 ≥
𝑛−2

2
 for 

a simple graph 𝐺 need not imply that G is connected. 

Exercise 5.5. In a group of six people, prove that there must be three people who 

are mutually acquainted or three people who are mutually nonacquainted. 

 

Our next result shows that of the two graphs 𝐺 and 𝐺𝑐, at least one of them 

must be connected. 

 

Theorem 1.5.7. If a simple graph 𝐺 is not connected, then 𝐺𝑐 is connected. 

Proof: 

 Let 𝑢 and 𝑣 be any two vertices of 𝐺𝑐 (and therefore of 𝐺).  

If 𝑢 and 𝑣 belong to different components of 𝐺, then obviously 𝑢 and 𝑣 

are nonadjacent in 𝐺 and so they are adjacent in 𝐺𝑐.  

Thus 𝑢 and 𝑣 are connected in 𝐺𝑐. 

 In case 𝑢 and 𝑣 belong to the same component of 𝐺, take a vertex 𝑤 of 𝐺 

not belonging to this component of 𝐺.  

 Then 𝑢𝑤 and 𝑣𝑤 are not edges of 𝐺 and hence they are edges of 𝐺𝑐. 
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2 

 Then 𝑢𝑤𝑣 is a 𝑢 − 𝑣 path in 𝐺𝑐. 

 Thus, 𝐺𝑐 is connected. 

  

Exercise 5.6. Show that if 𝐺 is a self-complementary graph of order 𝑛 then 𝑛 ≡

0 or 1 (𝑚𝑜𝑑 4). 

Exercise 5.7. Show that if a self-complementary graph contains a pendant 

vertex, then it must have at least another pendant vertex. 

 

The next theorem gives an upper bound on the number of edges in a simple  

   graph. 

 

Theorem 1.5.8. The number of edges of a simple graph of order 𝑛 having 

𝜔 components cannot exceed 
(𝑛−𝜔)(𝑛−𝜔+1)

2
. 

Proof: 

 Let 𝐺1, 𝐺2, … , 𝐺𝜔 be the components of a simple graph 𝐺 and let 𝑛𝑖 be the 

number of vertices of 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝜔. 

 Then 𝑚(𝐺𝑖) ≤
𝑛𝑖(𝑛𝑖−1)

2
, 

 And hence 𝑚(𝐺𝑖) ≤ ∑
𝑛𝑖(𝑛𝑖−1)

2

𝜔
𝑖=1 . 

Since 𝑛𝑖 ≥ 1 for each 𝑖, 1 ≤ 𝑖 ≤ 𝜔,  

 𝑛𝑖 = 𝑛 − (𝑛1 + 𝑛2 + ⋯ + 𝑛𝑖−1 + 𝑛𝑖+1 + ⋯ + 𝑛𝜔) ∑ (𝑛𝑖 − 1)
𝜔

𝑖=1
 

       =
(𝑛−𝜔+1)

2
[(∑ 𝑛𝑖) − 𝜔𝜔

𝑖=1 ] 

       =
(𝑛−𝜔)(𝑛−𝜔+1)

2
. 
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Definition 1.5.9. A graph G is called locally connected if, for every vertex 𝑣 

of 𝐺, the subgraph 𝑁𝐺(𝑣) induced by the neighbor set of 𝑣 in 𝐺 is connected. 

A cycle is odd or even depending on whether its length is odd or even. 

We now characterize bipartite graphs. 

 

Theorem 1.5.10. A graph is bipartite if and only if it contains no odd  

cycles. 

Proof:  

Suppose that 𝐺 is a bipartite graph with the bipartition (𝑋, 𝑌). 

Let 𝐶 = 𝑣1𝑒1𝑣2𝑒2𝑣3𝑒3 … 𝑣𝑘𝑒𝑘𝑣1 be a cycle in 𝐺. 

Without loss of generality, we can suppose that 𝑣1 ∈ 𝑋.  

As 𝑣2 is adjacent to 𝑣1, 𝑣2 ∈ 𝑌. 

Similarly, 𝑣3 belongs to 𝑋, 𝑣4 to 𝑌, and so on. 

Thus,  

 𝑣𝑖 ∈ 𝑋 or 𝑌 according as 𝑖 is odd or even, 1 ≤ 𝑖 ≤ 𝑘. 

Since 𝑣𝑘𝑣1 is an edge of 𝐺 and 𝑣1 ∈ 𝑋, 𝑣𝑘 ∈ 𝑌. 

 Accordingly, 𝑘 is even and 𝐶 is an even cycle. 

Conversely, 

 Let us suppose that 𝐺 contains no odd cycles. 

We first assume that 𝐺 is connected.  

 Let 𝑢 be a vertex of 𝐺. 

Define 𝑋 = {𝑣 ∈ 𝑉| 𝑑(𝑢, 𝑣) is even} and 𝑌 = {𝑣 ∈ 𝑉| 𝑑(𝑢, 𝑣) is odd}. 

To prove: (𝑋, 𝑌) is a bipartition of 𝐺. 

It is enough to show that no two vertices of 𝑋 and no two vertices of 𝑌 are 

adjacent in 𝐺. 

Then, 

 𝑝 = 𝑑(𝑢, 𝑣) and 𝑞 = 𝑑(𝑢, 𝑤) are even. 
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Further,  

As 𝑝 = 𝑑(𝑢, 𝑢) = 0, 𝑢 ∈ 𝑋. 

Let  𝑃 be a 𝑢 − 𝑣 shortest path of length 𝑝, and 𝑄, a 𝑢 − 𝑤 shortest path 

of length 𝑞. (See Figure 1.19.)  

Let 𝑤1 be a vertex common to 𝑃 and 𝑄 such that the 𝑤1 − 𝑣 section of 𝑃 

and the 𝑤1 − 𝑤 section of 𝑄 contain no vertices common to 𝑃 and 𝑄.  

Then, 

 𝑢 − 𝑤1 section of both 𝑃 and 𝑄 have the same length. 

 

 

 Hence, the length of the 𝑤1 − 𝑣 section of 𝑃 and the 𝑤1 − 𝑤 section of 𝑄 

are both even or both odd. 

Now, 

 If 𝑒 = 𝑢𝑤 is an edge of 𝐺, then the 𝑤1 − 𝑣 section of 𝑃 folleded by the 

edge 𝑣𝑤 and the 𝑤 − 𝑤1 section of 𝑤 − 𝑢 path 𝑄−1 is an odd cycle in 𝐺, 

contradicting the hypothesis. 

 This contradiction proves that no two vertices of 𝑋 are adjacent in 𝐺. 

Similarly,  

 no two vertices of 𝑌 are adjacent in 𝐺. 

This proves the result when 𝐺 is connected. 
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 If 𝐺 is not connected, let 𝐺1, 𝐺2, … , 𝐺𝜔 be the components of 𝐺. 

By hypothesis,  

 No component of 𝐺 contains an odd cycle. 

Hence, 

 By previous paragraph,  

 Each component of 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝜔, is bipartite. 

Let 𝑋𝑖 , 𝑌𝑖 be the bipartition of 𝐺𝑖. 

Then, 

 (𝑋, 𝑌), where 𝑋 = ⋃ 𝑋𝑖
𝜔
𝑖=1  and 𝑌 = ⋃ 𝑌𝑖

𝜔
𝑖=1 , is a bipartition of 𝐺, and 𝐺 is 

a bipartite graph. 

 

Exercise 5.8. Prove that a simple nontrivial graph 𝐺 is connected if and only if 

for any partition of 𝑉 into two nonempty subsets 𝑉1 and 𝑉2, there is an edge 

joining a vertex of 𝑉1 to a vertex of 𝑉2 

Exercise 5.9. Prove that in a connected graph G with at least three vertices, any 

two longest paths have a vertex in common. 

Exercise 5.10. Prove that in a simple graph 𝐺 the union of two distinct paths 

joining two distinct vertices contains a cycle. 

Exercise 5.11. Show by means of an example that the union of two distinct 

walks joining two distinct vertices of a simple graph 𝐺 need not contain a cycle. 

Exercise 5.12. If a simple connected graph 𝐺 is not complete, prove that there 

exist three vertices 𝑢, 𝑣, 𝑤 of 𝐺 such that 𝑢𝑣 and 𝑣𝑤 are edges of 𝐺, but 𝑢𝑤 is 

not an edge of 𝐺. 
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1.6 Automorphism of a Simple Graph: 

Definition 1.6.1.  

An automorphism of a graph 𝐺 is an isomorphism of 𝐺 onto itself. We 

recall that two simple graphs 𝐺 and 𝐻 are isomorphic if and only if there exists 

a bijection ∅: 𝑉(𝐺) → 𝑉(𝐻)  such that 𝑢𝑣 is an edge of 𝐺 if and only if 

∅(𝑢)∅(𝑣)  is an edge of 𝐻.  In this case ∅ is called an isomorphism of 𝐺 

onto 𝐻. 

We prove in our next theorem that the set 𝐴𝑢𝑡 (𝐺) of automorphisms of 

𝐺 is a group. 

 

Theorem 1.6.2. The set 𝐴𝑢𝑡 (𝐺) of all automorphisms of a simple graph 𝐺 is 

a group with respect to the composition ◦ of mappings as the group operation. 

Proof: We shall verify that the four axioms of a group are satisfied by the 

pair (𝐴𝑢𝑡 (𝐺), ◦). 

 

(i) Let ∅1 and ∅2 be bijections on 𝑉(𝐺) preserving adjacency and 

nonadjacency. 

Clearly, the mapping ∅1 ◦ ∅2 is a bijection on 𝑉(𝐺). 

If 𝑢 and 𝑣 are adjacent in 𝐺, then ∅2(𝑢) and ∅2(𝑣) are adjacent in 

𝐺.  

But (∅1 ◦ ∅2)(𝑢) = ∅1(∅2(𝑢)) and (∅1 ◦ ∅2)(𝑣) = ∅1(∅2(𝑣)). 

Hence, 

  (∅1 ◦ ∅2)(𝑢) and (∅1 ◦ ∅2)(𝑣) are adjacent in 𝐺; 

that is, ∅1 ◦ ∅2 preserves adjacency. 

   A similar argument shows that ∅1 ◦ ∅2 preserves adjacency. 

   Thus, 
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   ∅1 ◦ ∅2 is an automorphism of 𝐺. 

(ii) It is a well-known result that the composition of mappings of a set 

onto itself is associative. 

 

(iii) The identity mapping 𝐼 of 𝑉(𝐺) onto itself is an automorphism of 

𝐺, and it satisfies the condition 

   ∅ ◦ 𝐼 = 𝐼 ◦ ∅ = ∅ for every ∅ ∈ 𝐴𝑢𝑡 (𝐺). 

Hence, 

  𝐼 is the identity element of 𝐴𝑢𝑡 (𝐺). 

 

(iv) Finally, if ∅ is an automorphism of 𝐺,  

the inverse mapping ∅−1 is also an automorphism of 𝐺. 

 

Theorem 1.6.3. For any simple graph 𝐺,  𝐴𝑢𝑡 (𝐺) = 𝐴𝑢𝑡 (𝐺𝑐). 

Proof: 

 Since 𝑉(𝐺𝑐) = 𝑉(𝐺), every bijection on 𝑉(𝐺) is also a bijection on 

𝑉(𝐺𝑐). 

As an automorphism of G preserves the adjacency and nonadjacency of 

vertices of  𝐺 it also preserves the adjacency and nonadjacency of vertices of 

𝐺𝑐.  

Hence,  

every element of 𝐴𝑢𝑡 (𝐺) is also an element of 𝐴𝑢𝑡 (𝐺𝑐), and vice versa. 

  

Exercise 6.1. Show that the automorphism group of 𝐾𝑛 (or 𝐾𝑛
𝑐) is isomorphic to 

the symmetric group 𝑆𝑛 of degree 𝑛. 

Exercise 6.2. Find the automorphism groups of the following graphs: 
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1.7 Line Graphs: 

 Let 𝐺 be a loop less graph. We construct a graph 𝐿(𝐺) in the following 

way: 

The vertex set of 𝐿(𝐺) is in 1-1 correspondence with the edge set of 𝐺 

and two vertices of 𝐿(𝐺) are joined by an edge if and only if the corresponding 

edges of 𝐺 are adjacent in 𝐺. The graph 𝐿(𝐺) (which is always a simple 

graph) is called the line graph or the edge graph of 𝐺. 

Figure 1.22 shows a graph and its line graph in which 𝑣𝑖 of 𝐿(𝐺) 

corresponds to the edge 𝑒𝑖 of 𝐺 for each 𝑖. Isolated vertices of 𝐺 do not have 

any bearing on 𝐿(𝐺), and hence we assume in this section that 𝐺 has no 

isolated vertices. We also assume that 𝐺 has no loops. 

Some simple properties of the line graph 𝐿(𝐺) of a graph 𝐺 follow: 

 

1. 𝐺 is connected if and only if 𝐿(𝐺) is connected. 

2. If 𝐻 is a subgraph of 𝐺, then 𝐿(𝐻) is a subgraph of 𝐿(𝐺). 
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3. The edges incident at a vertex of 𝐺 give rise to a maximal complete 

subgraph of 𝐿(𝐺). 

4. If 𝑒 = 𝑢𝑣 is an edge of a simple graph 𝐺, the degree of 𝑒 in 𝐿(𝐺) is same 

as the number of edges of 𝐺 adjacent to 𝑒 in 𝐿(𝐺).  

This number is 𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2. 

 Hence, 

  𝑑𝐿(𝐺)(𝑒) = 𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2. 

 

5. Finally, if 𝐺 is a simple graph, 

 ∑     𝑑𝐿(𝐺)(𝑒)𝑒∈𝑉(𝐿(𝐺))  

= ∑    (𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2)
𝑢𝑣∈𝐸(𝐺)

 

                                                

= [∑    𝑑𝐺(𝑢)2

𝑢∈𝑉(𝐺)
] − 2𝑚(𝐺) 

    (Since 𝑢𝑣 belongs to the stars at 𝑢 and 𝑣) 

                                          = [∑ 𝑑𝑖
2

𝑛

𝑖=1
] − 2𝑚 

where (𝑑1, 𝑑2, … , 𝑑𝑛) is the degree sequence of 𝐺, and 𝑚 = 𝑚(𝐺). 

 

By Euler’s theorem,  

  it follows that the number of edges of 𝐿(𝐺) is given by  

                                       𝑚(𝐿(𝐺))  =
1

2
[∑ 𝑑𝑖

2
𝑛

𝑖=1
] − 𝑚 
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Exercise 7.1. Show that the line graph of the star 𝐾1,𝑛 is the complete graph 

𝐾𝑛. 

Exercise 7.2. Show that 𝐿(𝐶𝑛) ≅ 𝐶𝑛, 𝑛 ≥ 3. 

 

Theorem 1.7.1.  

The line graph of a simple graph G is a path if and only if G is a path. 

 

Exercise 7.5. Prove that a simple connected graph G is isomorphic to its line 

graph if and only if it is a cycle. 
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Theorem 1.7.4* (H. Whitney).   

  Let 𝐺  and 𝐺 ′ be simple connected graphs with isomorphic line graphs. 

Then 𝐺  and 𝐺 ′ are isomorphic unless one of them is 𝐾1,3 and the other is 𝐾3 

Proof:   

First, suppose that 𝑛(𝐺)  and 𝑛(𝐺 ′) are less than or equal to 4. A 

necessary condition for 𝐿(𝐺)  and L(𝐺 ′) to be isomorphic is that 𝐿(𝐺)  and 

L(𝐺 ′).  The only non-isomorphic connected graphs on at most four vertices 

are those shown in Figure 1.23. 

  In Figure 1.23, graphs 𝐺4, 𝐺5 and 𝐺6 are the three graphs having three 

edges each. 

  We have already seen that 𝐺4 and 𝐺6 have isomorphic line graphs, 

namely, 𝐾3. 
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 The line graph of 𝐺5 is a path of length 2, and hence 𝐿(𝐺5) cannot be 

isomorphic to  𝐿(𝐺4) or 𝐿(𝐺6). 

 Further, 

   𝐺7 and 𝐺8 are the only two graphs in the list having four edges 

each. 

 

Now, 

 𝐿(𝐺8) ≅ 𝐺8, and 𝐿(𝐺7) is isomorphic to 𝐺9. 

Thus, 

 The line graphs 𝐺7 and 𝐺8 are not isomorphic. 

No two of the remaining graphs have the same number of edges.  

 

Hence, 

  the only non-isomorphic graphs with at most four vertices having 

isomorphic line graphs are 𝐺4 and 𝐺6. 
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We now suppose that either 𝐺 or 𝐺 ′, say 𝐺, has at least five vertices and 

that 𝐿(𝐺)  and L(𝐺 ′) are isomorphic under an isomorphism ∅1. ∅1  is a bijection 

from the edge set of 𝐺 onto the edge set of 𝐺 ′. 

  

 We now prove that ∅1 transforms a 𝐾1,3 subgraph of 𝐺 onto a 𝐾1,3 

subgraph of 𝐺 ′.  

Let 𝑒1 = 𝑢𝑣1 , 𝑒2 = 𝑢𝑣2 and 𝑒3 = 𝑢𝑣3 be the edges of a 𝐾1,3 subgraph of 

𝐺.  

As 𝐺 has at least five vertices and is connected, there exists an edge 𝑒 

adjacent to only one or all the three edges 𝑒1 , 𝑒2  and 𝑒3 as illustrated in Fig. 1.24. 

 

Now,  

∅1(𝑒1), ∅1(𝑒2) and ∅1(𝑒3) from either a 𝐾1,3 subgraph or a triangle in 

𝐺 ′. 

If  ∅1(𝑒1), ∅1(𝑒2) and ∅1(𝑒3) from a triangle in 𝐺 ′, ∅1(𝑒) can be 

adjacent to precisely two of  ∅1(𝑒1), ∅1(𝑒2) and ∅1(𝑒3) (Since 𝐿(𝐺 ′) is 

simple), whereas ∅1(𝑒) must be adjacent to only one or all the three.  

This contradiction shows that {∅1(𝑒1), ∅1(𝑒2), ∅1(𝑒3)} is not a triangle 

in 𝐺 ′ and therefore forms a star at a vertex 𝑣 ′ of 𝐺 ′. 

 

It is clear that a similar result holds for ∅1
−1

 as well, since it is an 

isomorphism of 𝐿(𝐺 ′) onto 𝐿(𝐺). 

 

Let 𝑆(𝑢) denote the star subgraph of 𝐺 formed by the edges of 𝐺 incident 

at a vertex 𝑢 of 𝐺. 

 

We shall prove that ∅1 maps 𝑆(𝑢)  onto the star subgraph 𝑆(𝑢′) of 𝐺 ′. 
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(i) First, suppose that the degree of 𝑢 is at least 2. 

     Let 𝑓1 and 𝑓2 be any two edges incident at 𝑢. 

     The edges ∅1(𝑓1) and ∅1(𝑓2) of 𝐺 ′ have an end vertex 𝑢′ in common.  

     If 𝑓 is any other edge of 𝐺 incident with 𝑢, then ∅1(𝑓) is incident with  

     𝑢′, and conversely, for every edge 𝑓′ of 𝐺 ′ incident with 𝑢′,  ∅1
−1(𝑓′)    

     is incident with 𝑢.  

     Thus, 

                𝑆(𝑢) in 𝐺 is mapped to 𝑆(𝑢′) in 𝐺 ′.  

 

(ii) Let the degree of 𝑢 in 𝐺 be 1 and 𝑒 = 𝑢𝑣 be the unique edge incident 

with 𝑢. 

As 𝐺 is connected and 𝑛(𝐺) ≥ 5, degree of 𝑣 must be at least 2 in 𝐺 

and therefore, by (i), 𝑆(𝑣) is mapped to a star 𝑆(𝑣 ′) in 𝐺 ′. 

Also, 

 ∅1(𝑢𝑣) = 𝑢′𝑣 ′ for some 𝑢′ ∈ 𝑉(𝐺 ′). 

 

Now, 

 If the degree of 𝑢′ in 𝐺 ′ is greater than 1, by paragraph (i), the star 

at 𝑢′ in 𝐺 ′ is transformed by ∅1
−1

 either to the star at 𝑢 in 𝐺 or to the 

star at 𝑣 in 𝐺. 

 

But as the star at 𝑣 in 𝐺 is mapped to the star at 𝑣 ′ in 𝐺 ′ by ∅1, ∅1
−1

 

should map the star at 𝑢′ in 𝐺 ′ is transformed by ∅1
−1

 either to the star 

at 𝑢 in 𝐺 or to the star at 𝑣 in 𝐺. 
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But as star at 𝑣 in 𝐺 is mapped to the star at 𝑣 ′ in 𝐺 ′ by ∅1, ∅1
−1

  

should map the stars 𝑢′ in 𝐺 ′ to the star at 𝑢 in 𝐺 only.  

 

  As ∅1
−1

 is 1 − 1, this means that 𝑑𝐺 (𝑢) ≥ 2, a contradiction. 

 

Therefore, 

 𝑑𝐺′(𝑢′) = 1 and so 𝑆(𝑢) in 𝐺 is mapped onto 𝑆(𝑢′) in 𝐺 ′. 

 

Thus, 

 𝐺 and 𝐺 ′ are isomorphic under ∅. 

  

Definition 1.7.5. A graph 𝐻 is called a forbidden subgraph for a property 𝑃 

of graphs if it satisfies the following condition: If a graph 𝐺 has property 

𝑃, then 𝐺 cannot contain an induced subgraph isomorphic to 𝐻. 

 

Beineke [17] obtained a forbidden-subgraph criterion for a graph to be a 

line graph.  

 

In fact, he showed that a graph 𝐺 is a line graph if and only if the nine 

graphs of Figure 1.25 are forbidden subgraphs for 𝐺.  

 

However, for the sake of later reference, we prove only the following 

result. 

    

Theorem 1.7.6. If G is a line graph, then 𝐾1,3 is a forbidden subgraph of G 
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1.8 Operations on Graphs: 

 In this section we consider some of the methods of generating new graphs 

from a given pair of graphs. 

  Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two simple graphs. 

 

Definition 1.8.1.   

Union of two graphs:  

The graph 𝐺 = (𝑉, 𝐸),  where 𝑉 = 𝑉1 ∪ 𝑉2 and 𝐸 = 𝐸1 ∪ 𝐸2  is called 

the union of 𝐺1 and 𝐺2 and is denoted by 𝐺1 ∪ 𝐺2.   
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_
 
C 

When 𝐺1 and 𝐺2 are vertex disjoint, 𝐺1 ∪ 𝐺2is denoted by 𝐺1 + 𝐺2 and 

is called the sum of the graphs G1 and G2: 

 

The finite union of graphs is defined by means of associativity; in 

particular, if 𝐺1 , 𝐺2, . . . , 𝐺𝑟 are pairwise vertex-disjoint graphs, each of which 

is isomorphic to 𝐺 then 𝐺1 + 𝐺2, + . . . +𝐺𝑟 is denoted by 𝑟𝐺. 

 

 Definition 1.8.2.   

Intersection of two graphs:  

If 𝑉1 ∩ 𝑉2 ≠ 0,  the graph 𝐺 = (𝑉, 𝐸) where 𝑉 =  𝑉1 ∩ 𝑉2 and 

𝐸 =  𝐸1 ∩ 𝐸2 is the intersection of 𝐺1  and 𝐺2 and is written as  𝐺1 ∩ 𝐺2. 

 

Definition 1.8.3. 

Join of two graphs:  

Let 𝐺1 and 𝐺2  be two vertex-disjoint graphs. Then the join 𝐺1 ⩗ 𝐺2 of 𝐺1 

and 𝐺2 is the super graph of 𝐺1 + 𝐺2 in which each vertex of 𝐺1 is also 

adjacent to every vertex of 𝐺2. 

 

Figure 1.26 illustrates the graph 𝐺1 ⩗ 𝐺2. If 𝐺1 = 𝐾1 and 𝐺2 = 𝐶𝑛, then 

   𝐺1 ⩗ 𝐺2 is called the wheel 𝑊𝑛. 𝑊5 is shown in Fig. 1.27. 
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1.9 Graph Products: 

We now define graph products. Denote a general graph product of two simple 

graphs by 𝐺 ∗  𝐻. We define the product in such a way that 𝐺 ∗  𝐻 is also 

simple. Given graphs 𝐺1 and 𝐺2 with vertex sets 𝑉1 and 𝑉2 respectively, any 

product graph 𝐺1 ∗ 𝐺2  has as its vertex set the Cartesian product 𝑉(𝐺1) ×

𝑉(𝐺2). 
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 For any two vertices 

 (𝑢1, 𝑢2), (𝑣1, 𝑣2) of  𝐺1 ∗ 𝐺2, consider the following possibilities: 

(i) 𝑢1 adjacent to 𝑣1 in 𝐺1 or 𝑢1 non-adjacent to 𝑣1 in 𝐺1. 

(ii) 𝑢2 adjacent to 𝑣2 in 𝐺2 or 𝑢2 n0n-adjacent to 𝑣2 in 𝐺2. 

(iii) 𝑢1 = 𝑣1 and/or 𝑢2 = 𝑣2. 

 

Definition 1.9.1:  

Cartesian product, 𝐺1□𝐺2 is defined by  

(𝑢1, 𝑢2) and (𝑣1, 𝑣2) are adjacent in 𝐺1□𝐺2 if and only if either 𝑢1 = 𝑣1 and 

𝑢2 is adjacent to 𝑣2 in 𝐺2, or 𝑢1 is adjacent to 𝑣1 in 𝐺1 and 𝑢2 = 𝑣2. 

 

Definition 1.9.2:  

Direct (or tensor or Kronecker) product, 𝐺1 × 𝐺2 is defined by  

(𝑢1, 𝑢2)  is adjacent to (𝑣1, 𝑣2) in 𝐺1 × 𝐺2 if and only if either 𝑢1 is adjacent 

to 𝑣1 in 𝐺1 and 𝑢2 is adjacent to 𝑣2 in 𝐺2 and 𝑢2 = 𝑣2. 

 

Definition 1.9.3: 

Composition (or wreath or lexicographic) product, 𝐺1[𝐺2] is defined by  

(𝑢1, 𝑢2) is adjacent to  (𝑣1, 𝑣2) 𝐺1[𝐺2] if and only if  𝑢1 is adjacent to 𝑣1 in 

𝐺1, or 𝑢1 =  𝑣1, and 𝑢2 is adjacent to 𝑣2 in 𝐺2. 

 

Definition 1.9.4:  

Strong (or normal) product, 𝐺1 ⊠ 𝐺2.  

By definition,   

𝐺1 ⊠ 𝐺2 = (𝐺1□𝐺2) ∪ (𝐺1 × 𝐺2). 
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Example 1.9.5: 

Example of Cartesian product:  

Let 𝐺1 = 𝐶4 = (𝑢1 𝑢2 𝑢3 𝑢4) and  

𝐺2 = 𝑃3 = (𝑣1 𝑣2  𝑣3). 

Then, 𝐺1□𝐺2 is the graph 𝐺3 given in Figure 1.28. 
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Example 1.9.6: 

If 𝐺1 and 𝐺2 are graphs in Figure 2.26, 𝐺1[𝐺2] and 𝐺2[𝐺1] are shown in Figures- 

1.29 and 1.30, respectively. 
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Example 1.9.7: 

If 𝐺1 and 𝐺2 are graphs in Figure 1.26, 𝐺1 ⊠ 𝐺2 aand 𝐺1 × 𝐺2 are shown in 

Figure 1.31.  

 

 

 

 

Exercise 9.1: 

Prove that 𝐺1□𝐺2 ≅ 𝐺2□𝐺1. 
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Unit-II: 

Connectivity: Vertex Cuts and Edge Cuts - Connectivity and Edge 

Connectivity - Blocks. 

Chapter 3: Section 3.1 to 3.4. 

 

2. Directed Graphs: 

2.1. Introduction: 

Directed graphs arise in a natural way in many applications of graph theory. 

The street map of a city, an abstract representation of computer programs, and 

network flows can be represented only by directed graphs rather than by graphs. 

Directed graphs are also used in the study of sequential machines and system 

analysis in control theory. 

 

2.2. Basic Concepts: 

 

Definition 2.2.1.  

A directed graph 𝐷 is an ordered triple (𝑉(𝐷), 𝐴(𝐷), 𝐼𝐷) where  𝑉(𝐷) 

is a nonempty set called the set of vertices of 𝐷; 𝐴(𝐷)  is a set disjoint from 

𝑉(𝐷), called the set of arcs of 𝐷 and 𝐼𝐷 is an incidence map that associates 

with each arc of 𝐷 an ordered pair of vertices of 𝐷. If 𝑎 is an arc of 𝐷, and 

𝐼𝐷(𝑎) = (𝑢, 𝑣), 𝑢 is called the tail of 𝑎, and 𝑣 is the head of 𝑎. The arc 𝑎 is 

said to join 𝑣 with 𝑢. 𝑢 and 𝑣 are called the ends of 𝑎. A directed graph is also 

called a digraph. 

 

With each digraph 𝐷, we can associate a graph 𝐺 (written 𝐺(𝐷) when 

reference to 𝐷 is needed) on the same vertex set as follows: Corresponding 

to each arc of 𝐷, there is an edge of 𝐺 with the same ends. This graph 𝐺 is 
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called the underlying graph of the digraph 𝐷. Thus, every digraph 𝐷 defines 

a unique (up to isomorphism) graph 𝐺. Conversely, given any graph 𝐺, we 

can obtain a digraph from 𝐺 by specifying for each edge of 𝐺 an order of its 

ends. Such a specification is called an orientation of 𝐺. 

 

A digraph is represented by a diagram of its underlying graph together 

with arrows on its edges, the arrow pointing toward the head of the 

corresponding arc. A digraph and its underlying graph are shown in Figure 

2.1. 

 

 

3. Connectivity: 

3.1. Introduction: 

The connectivity of a graph is a “measure” of its connectedness. Some 

connected graphs are connected rather “loosely” in the sense that the deletion 

of a vertex or an edge from the graph destroys the connectedness of the graph. 

There are graphs at the other extreme as well, such as the complete graphs 

𝐾𝑛, 𝑛 ≥ 2, which remain connected after the removal of any 𝑘 vertices, 1 ≤

𝑘 ≤ 𝑛 − 1. 
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Consider a communication network. Any such network can be 

represented by a graph in which the vertices correspond to communication 

centers and the edges represent communication channels. In the communication 

network of Fig. 3.1a, any disruption in the communication center v will result in 

a communication breakdown, whereas in the network of Fig. 3.1b, at least two 

communication centers have to be disrupted to cause a breakdown. It is needless 

to stress the importance of maintaining reliable communication networks at all 

times, especially during times of war, and the reliability of a communication 

network has a direct bearing on its connectivity. 

 

In this chapter, we study the two graph parameters, namely, vertex 

connectivity and edge connectivity. We also introduce the parameter cyclical 

edge connectivity. We prove Menger’s theorem and several of its variations. In 

addition, the theorem of Ford and Fulkerson on flows in networks is established. 

 

3.1 Vertex Cuts and Edges Cuts: 

We now introduce the notions of vertex cuts, edge cuts, vertex 

connectivity, and edge connectivity. 

 

Definitions 3.2.1.  

1. A subset 𝑉′ of the vertex set 𝑉(𝐺) of a connected graph 𝐺 is a vertex 

cut of 𝐺 if 𝐺 − 𝑉′ is disconnected; it is a 𝑘-vertex cut if |𝑉′| = 𝑘.  𝑉′ is then 

called a separating set of vertices of 𝐺. A vertex 𝑣 of 𝐺 is a cut vertex of 𝐺 if 

{𝑣} is a vertex cut of 𝐺. 

 

2. Let 𝐺 be a nontrivial connected graph with vertex set 𝑉(𝐺) and let 𝑆 

be a non-empty subset of 𝑉(𝐺).  For 𝑆̅ = 𝑉\𝑆 ≠ 0, let [𝑆, 𝑆̅] denote the set of 
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all edges of 𝐺 that have one end vertex in 𝑆 and the other in 𝑆̅. A set of edges of 

𝐺  of the form [𝑆, 𝑆̅] is called an edge cut of 𝐺. An edge 𝑒 is a cut edge of 𝐺 

if {𝑒} is an edge cut of 𝐺. An edge cut of cardinality 𝑘 is called a 𝑘-edge cut of 

𝐺. 

 

 

 

 

Example 3.2.2.  

For the graph of Figure 3.2, {𝑣2}, and {𝑣3 , 𝑣4} are vertex cuts.  

The edge subsets {𝑣3𝑣5, 𝑣4𝑣5}, {𝑣1𝑣2}, and {𝑣4𝑣6} are all edge cuts.  

Of these, 𝑣2 is a cut vertex, and 𝑣1𝑣2 and 𝑣4𝑣6 are both cut edges.  

For the edge cut {𝑣3𝑣5 , 𝑣4𝑣5}, we may take 𝑆 = {𝑣5}  so that  

𝑆̅ = {𝑣1, 𝑣2 , 𝑣3 , 𝑣4 , 𝑣5}. 
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Remarks 3.2.3:  

1.  If 𝑢𝑣 is an edge of an edge cut 𝐸′; then all the edges having 𝑢 and 𝑣 as their 

ends also belong to 𝐸′. 

2. No loop can belong to an edge cut. 

 

Exercise 2.1.  

If {𝑥, 𝑦} is a 2-edge cut of a graph 𝐺, show that every cycle of 𝐺 that contains 

𝑥 must also contain 𝑦. 

 

Theorem 3.2.4:  

A vertex 𝑣 of a connected graph 𝐺 with at least three vertices is a cut vertex of 

𝐺 if and only if there exist vertices 𝑢 and 𝑤 of 𝐺 distinct from 𝑣 such that 𝑣 is 

in every 𝑢 − 𝑤 path in 𝐺. 

Proof: 

If 𝑣 is a cut vertex of 𝐺,  

then 𝐺 − 𝑣 is disconnected and has at least two components, 𝐺1 and 𝐺2.  

Take 𝑢 ∈ 𝑉(𝐺1) and 𝑣 ∈ 𝑉(𝐺2). 

Then every 𝑢 − 𝑤 path in 𝐺 must contain 𝑣,  as otherwise 𝑢 and 𝑤 would 

belong to the same component of  𝐺 − 𝑣. 

 

Conversely,  

           Suppose that the condition of the theorem holds.  

Then, 

          the deletion of 𝑣 destroys every 𝑢 − 𝑤 path in 𝐺, 

         and hence 𝑢 and 𝑤 lie in distinct components of 𝐺 − 𝑣. 

Therefore,  

         𝐺 − 𝑣 is disconnected and 𝑣 is a cut vertex of 𝐺. 
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Theorems 3.2.5 and 3.2.6 characterize a cut edge of a graph. 

 

Theorem 3.2.5: 

An edge 𝑒 = 𝑥𝑦of a connected graph 𝐺 is a cut edge of 𝐺 if and only if 𝑒 belongs 

to no cycle of 𝐺. 

Proof:   

Let 𝑒 be a cut edge of 𝐺  and let [𝑆, 𝑆̅] = {𝑒} be the partition of 𝑉 defined 

by 𝐺 —  𝑒 so that one of 𝑥  and 𝑦  belongs to 𝑆 and the other to 𝑆̅, say, 𝑥 ∈ 𝑆  

and 𝑦 ∈ 𝑆̅. 

 If 𝑒 belongs to a cycle of 𝐺, then [𝑆, 𝑆̅] must contain at least one more 

edge, contradicting that {𝑒} = [𝑆, 𝑆̅]. 

Hence,  

𝑒 cannot belong to a cycle. 

Conversely,  

Assume that 𝑒 is not a cut edge of 𝐺. 

Then, 

𝐺 —  𝑒 is connected,  

and hence, 

there exists an 𝑥 − 𝑦 path 𝑃  in 𝐺 — 𝑒. 

Then, 

 𝑃 ∪ {𝑒} is a cycle in 𝐺 containing 𝑒. 

 

Theorem 3.2.6: 

An edge 𝑒 = 𝑥𝑦 is a cut edge of a connected graph 𝐺 if and only if there exist 

vertices 𝑢 and 𝑣 such that 𝑒 belongs to every 𝑢 − 𝑣 path in 𝐺. 

Proof:  

Let 𝑒 = 𝑥𝑦 be a cut edge of 𝐺  
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Then, 

                 𝐺 − 𝑒 has two components, say, 𝐺1 and 𝐺2. 

Let 𝑢 ∈ 𝑉(𝐺1) and 𝑣 ∈ 𝑉(𝐺2). 

Then,  

 clearly, every 𝑢 − 𝑣 path in 𝐺 contains 𝑒. 

Conversely,  

                 Suppose that there exist vertices 𝑢 and 𝑣 satisfying the condition of 

the theorem.  

Then, 

                 there exists no 𝑢 − 𝑣 path in 𝐺 − 𝑒 so that 𝐺 − 𝑒 is disconnected. 

Hence,  

                  𝑒 is a cut edge of 𝐺. 

 

Theorem 3.2.7: 

A connected graph 𝐺 with at least two vertices contains at least two vertices 

that are not cut vertices. 
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Proof:  

First, suppose that 𝑛(𝐺) ≥ 3. 

Let 𝑢 and 𝑣 be vertices of 𝐺 such that 𝑑(𝑢, 𝑣) is maximum.  

Then, 

neither 𝑢 nor 𝑣 is a cut vertex of 𝐺. 

For if 𝑢 were a cut vertex of 𝐺, 𝐺 − 𝑢 would be disconnected, having at 

least two components.  

The vertex 𝑣 belongs to one of these components.  

          Let 𝑤 be any vertex belonging to a component of 𝐺 − 𝑢 not containing 𝑣. 

Then, 

every 𝑣 − 𝑤 path in 𝐺 must contain 𝑢 (see Figure 3.3).  

Consequently,  

𝑑(𝑣, 𝑤) > 𝑑(𝑣, 𝑢), contradicting the choice of 𝑢 and 𝑣.  

Hence,  

𝑢 is not a cut vertex of 𝐺.  

Similarly,  

𝑣 is not a cut vertex of 𝐺. 

If 𝑛(𝐺) = 2, then 𝐾2 is a spanning subgraph of G,  

and so no vertex of 𝐺 is a cut vertex of 𝐺.  

This completes the proof of the theorem. 

 

Exercise 2.1.  

Find the vertex cuts and edge cuts of the graph Figure 3.2. 

 

Exercise 2.3. 

Prove or disprove: Let 𝐺 be a simple connected graph with 𝑛(𝐺) ≥ 3. Then 

𝐺 has a cut edge if and only if 𝐺 has a cut vertex. 
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I 

— 

 

Exercise 2.4. Show that in a graph, the number of edges common to a cycle and 

an edge cut is even. 

 

3.3 Connectivity and Edge Connectivity: 

We now introduce two parameters of a graph that in a way measure the 

connected- ness of the graph. 

 

Definition 3.3.1.  

For a nontrivial connected graph 𝐺 having a pair of non-adjacent 

vertices, the minimum 𝑘 for which there exists a 𝑘-vertex cut is called the 

vertex connectivity or simply the connectivity of 𝐺 it is denoted by 𝙠(G) or 

simply 𝙠 (kappa) when 𝐺 is understood.  

 

If 𝐺 is trivial or disconnected, 𝙠(G) is taken to be zero, whereas if 𝐺 

contains 𝐾𝑛 as a spanning subgraph, 𝙠(G) is taken to be 𝑛 − 1. 

 

A set of vertices and/or edges of a connected graph 𝐺 is said to disconnect 

𝐺 if its deletion results in a disconnected graph. 

 

When a connected graph 𝐺 (on 𝑛 ≥ 3 vertices) does not contain 𝐾𝑛 as a 

spanning subgraph, 𝙠 is the connectivity of G if there exists a set of 𝙠 vertices 

of 𝐺 whose deletion results in a disconnected subgraph of 𝐺 while no set of 

𝘬 − 1 (or fewer) vertices has this property. 

 

Exercise 3.1:  

Prove that a simple graph 𝐺 with 𝑛 vertices, 𝑛 ≥  2; is complete if and only if 

𝘬(G) = 𝑛 − 1. 
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≤ ≤ 
— 

 

Definition 3.3.2:  

The edge connectivity of a connected graph 𝐺 is the smallest 𝑘 for which there 

exists a 𝑘-edge cut (i.e., an edge cut having 𝑘 edges). The edge connectivity of 

a trivial or disconnected graph is taken to be 0. The edge connectivity of 𝐺 is 

denoted by 𝜆(𝐺). If 𝜆 is the edge connectivity of a connected graph 𝐺, there 

exists a set of 𝜆 edges whose deletion results in a disconnected graph, and no 

subset of edges of 𝐺 of size less than 𝜆 has this property. 

 

Exercise 3.2. Prove that the deletion of edges of a minimum-edge cut of a 

connected graph 𝐺 results in a disconnected graph with exactly two 

components. (Note that a similar result is not true for a minimum vertex cut.) 

 

Definition 3.3.3: 

A graph 𝐺 is 𝑟-connected if 𝘬(𝐺) ≥ 𝑟.  Also, 𝐺 is 𝑟-edge connected if 

𝜆(𝐺) ≥ 𝑟.   

An 𝑟-connected (respectively, 𝑟-edge-connected) graph is also ℓ-

connected (respectively, ℓ-edge connected) for each ℓ, 0 ≤ ℓ ≤ 𝑟 − 1. 

For the graph 𝐺 of Figure 3.5, 𝘬(𝐺) = 1 and  𝜆(𝐺) = 2.  
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We now derive inequalities connecting 𝘬(𝐺), 𝜆(𝐺) a nd  𝛿(𝐺).  

 

Theorem 3.3.4.  

For any loop-less connected graph 𝐺; 𝘬(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺).  

Proof: 

We observe that 𝘬 = 0 if and only if 𝜆 = 0. 

Also, 

𝛿 = 0 implies that 𝘬 = 0  and 𝜆 = 0. 

Hence, 

 we may assume that 𝘬, 𝜆 and 𝛿  are all at least 1. 

 Let ℇ be an edge cut of 𝐺 with 𝜆 edges.  

Let 𝑢 and 𝑣 be the end vertices of an edge of ℇ. 

For each edge of ℇ that does not have both 𝑢 and 𝑣 as end vertices, remove an end 

vertex that is different from 𝑢 and 𝑣. 

 

If there are 𝑡 such edges, at most 𝑡 vertices have been removed.  

If the resulting graph, say H, is disconnected, then 𝘬 ≤ 𝑡 < 𝜆. 

Otherwise,  

there will remain a subset of edges of 𝐸 having 𝑢 and 𝑣 as end vertices, 

the removal of which from 𝐻 would disconnect 𝐺.  

Hence,  

in addition to the already removed vertices, the removal of one of 𝑢 and 𝑣 will 

result in either a disconnected graph or a trivial graph.  
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In the process,  

a set of at most 𝑡 + 1 vertices has been removed and 𝘬 ≤ 𝑡 + 1 ≤ 𝜆. 

Finally,  

it is clear that 𝜆 ≤ 𝛿. 

In fact,  

if 𝑣 is a vertex of 𝐺 with 𝑑𝐺(𝑣) = 𝛿, then the set[{𝑣}, 𝑉 \{𝑣}] of 𝛿 edges 

of 𝐺  incident at 𝑣 forms an edge cut of 𝐺.  

Thus, 

𝜆 ≤ 𝛿. 

Note: 

It is possible that the inequalities in Theorem 3.3.4 can be strict. See the graph 𝐺 

of Figure 3.6, for which 𝘬 = 1, 𝜆 = 2, and 𝛿 = 3. 

 

Exercise 3.3: 

Prove or disprove: If 𝐻 is a subgraph of 𝐺, then 

(i) 𝘬(𝐻) ≤ 𝘬(𝐺) and 

(ii) 𝜆(𝐻) ≤ 𝜆(𝐺). 

Exercise 3.4: 

Determine 𝜆(𝐾𝑛). 
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Theorem 3.3.7 (Whitney [193]). A graph 𝐺 with at least three vertices is 2-

connected if and only if any two vertices of 𝐺 are connected by at least two 

internally disjoint paths. 

Proof: 

Let G be 2-connected.  

Then, 

G contains no cut vertex.  

Let u and v be two distinct vertices of G.  

 

We now use induction on 𝑑(𝑢, 𝑣) to prove that u and v are joined by two 

internally disjoint paths. 

 

If 𝑑(𝑢, 𝑣) = 1, 

 let 𝑒 = 𝑢𝑣. 

 

As G is 2-connected and 𝑛(𝐺) ≥ 3, e cannot be a cut edge of G, since if e were 

a cut edge, at least one of u and v must be a cut vertex.  

 

By Theorem 3.2.5,  

e belongs to a cycle C in G.  

Then, 

𝐶 − 𝑒 is a u-v path in G, internally disjoint from the path uv.  

 

Now, 

assume that any two vertices x and y of G with 𝑑(𝑥, 𝑦) = 𝑘 − 1, 𝑘 ≥ 2, 

are joined by two internally disjoint x-y paths in G.  

Let 𝑑(𝑢, 𝑣) = 𝑘. 
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Let P be a u-v path of length k and w be the vertex of G just preceding v on P. 

Then, 

𝑑(𝑢, 𝑤) = 𝑘 − 1.  

By an induction hypothesis,  

there are two internally disjoint u-w paths, say P1 and P2, in G.  

As G has no cut vertex, 𝐺 − 𝑤 is connected and hence there exists a u-v path 

Q in 𝐺 − 𝑤.  

Q is clearly a u-v path in G not containing w.  

Let x be the vertex of Q such that the x-v section of Q contains only 

the vertex x in common with P1∪P2 (see Figure 3.8). 

We may suppose,  

without loss of generality, that x belongs to P1.  

Then, 

the union of the u-x section of P1 and x-v section of Q and P2∪(wv) are 

two internally disjoint u-v paths in G.  

This gives the proof in one direction. 

 

In the other direction,  

assume that any two distinct vertices of G are connected by at least two 

internally disjoint paths.  

Then,  

G is connected.  

Further,  

G cannot contain a cut vertex, since if v were a cut vertex of G, there must 

exist vertices u and w such that every u-w path contains v (compare with 

Theorem 3.2.4), contradicting the hypothesis.  

Hence,  

G is 2-connected. 
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3.4  Blocks: 

In this section, we focus on connected graphs without cut vertices. 

 

Definition 3.4.1:  

A graph G is non-separable if it is nontrivial and connected and has no 

cut vertices. A block of a graph is a maximal non-separable subgraph of G. If G 

has no cut vertex, G itself is a block. 

 

In Figure 3.12,  

a graph G and its blocks B1, B2, B3, and B4 are indicated.  

B1, B3, and B4 are the end blocks of G 

(i.e., blocks having exactly one cut vertex of G).  

The following facts are worthy of observation. 
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Remarks 3.4.2:  

Let G be a connected graph with n ≥ 3. 

1.  Each block of G with at least three vertices is a 2-connected subgraph of G: 

2.  Each edge of G belongs to one and only one of its blocks.  

 Hence G is an edge- disjoint union of its blocks. 

3.  Any two blocks of G have at most one vertex in common.  

 (Such a common vertex is a cut vertex of G.) 

4.  A vertex of G that is not a cut vertex belongs to exactly one of its blocks. 

5.  A vertex of G is a cut vertex of G if and only if it belongs to at least two  

 blocks of G. 
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Whitney’s theorem (Theorem 3.3.7) implies that a graph with at least three 

vertices is a block if and only if any two vertices of the graph are connected 

by at least two internally disjoint paths.  

Also, any two vertices of a block with at least three vertices belong to a 

common cycle.  

Thus, a block with at least three vertices contains a cycle. 
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UNIT-III:  

Trees: Definition, Characterization and simple properties - Centres and 

centroids - Counting the number of Spanning Trees - Cayley's formula. 

Chapter 4: Section 4.1 to 4.5. 

4.1 Introduction: 

“Trees” form an important class of graphs. Of late, their importance has 

grown considerably in view of their wide applicability in theoretical computer 

science. 

 

In this chapter, we present the basic structural properties of trees, their 

centers and centroids. In addition, we present two interesting consequences of 

the Tutte– Nash–Williams theorem on the existence of k pairwise edge-disjoint 

spanning trees in a simple connected graph. We also present Cayley’s formula 

for the number of spanning trees in the labeled complete graph Kn.  

 

4.2 Definition, Characterization, and Simple Properties: 

Certain graphs derive their names from their diagrams. A “tree” is one 

such graph. Formally, a connected graph without cycles is defined as a tree. A 

graph without cycles is called an acyclic graph or a forest. So, each component 

of a forest is a tree. A forest may consist of just a single tree! Figure 4.1 displays 

two pairs of isomorphic trees. 

 

Remarks 4.2.1:  

1. It follows from the definition that a forest (and hence a tree) is a simple graph. 

2. A subgraph of a tree is a forest and a connected subgraph of a tree T is a 

subtree of T. 
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In a connected graph,  

any two distinct vertices are connected by at least one path.  

 

Trees are precisely those simple connected graphs in which every pair of 

distinct vertices is joined by a unique path. 

 

Theorem 4.2.2. A simple graph is a tree if and only if any two distinct vertices 

are connected by a unique path. 

Proof:  

Let T be a tree.  

Suppose that two distinct vertices u and v are connected by two distinct u-v 

paths.  

Then, 

their union contains a cycle in T,  

contradicting that T is a tree. 

Conversely,  

suppose that any two vertices of a graph G are connected by a unique path. 
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Then, 

G is obviously connected.  

Also,  

G cannot contain a cycle, since any two distinct vertices of a cycle are 

connected by two distinct paths.  

Hence, 

G is a tree. 

 

Note: 

A spanning subgraph of a graph G, which is also a tree, is called a 

spanning tree of G. A connected graph G and two of its spanning trees T1 and 

T2 are shown in Figure 4.2. 

 

The graph G of Figure 4.2 shows that a graph may contain more than one 

spanning tree; each of the trees T1 and T2 is a spanning tree of G. 

 

A loop cannot be an edge of any spanning tree, since such a loop 

constitutes a cycle (of length 1). On the other hand, a cut edge of G must be an 

edge of every spanning tree of G. Theorem 4.2.3 shows that every connected 

graph contains a spanning tree. 

 

Theorem 4.2.3. Every connected graph contains a spanning tree. 

Proof:  

Let G be a connected graph.  

Let ℐ be the collection of all connected spanning subgraphs of G.  

ℐ is nonempty as G∈ ℐ .  

 

Let T ∈ ℐ have the fewest number of edges.  
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Then,  

T must be a spanning tree of G.  

If not,  

T would contain a cycle of G, and the deletion of any edge of this cycle 

would give a (spanning) subgraph in ℐ having one edge less than that of T.  

This contradicts the choice of T.  

Hence,  

T has no cycles and is therefore a spanning tree of G. 

 

 

  

Now, we will see that, there is a relation between the number of vertices 

and the number of edges of any tree. 



 

     73 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

Theorem 4.2.7. A connected graph G is a tree if and only if every edge of G is 

a cut edge of G. 

Proof:  

If G is a tree, there are no cycles in G.  

Hence,  

no edge of G can belong to a cycle.  

By Theorem 3.2.7,  

each edge of G is a cut edge of G.  

Conversely,  

if every edge of a connected graph G is a cut edge of G, then G cannot 

contain a cycle, since no edge of a cycle is a cut edge of G.  

Hence,  

G is a tree.  

 

Exercise 2.7. Prove that the following statements are equivalent: 

1. G is connected and unicyclic (i.e., G has exactly one cycle). 

2. G is connected and 𝑛 = 𝑚. 

3. For some edge e of G, 𝐺 − 𝑒 is a tree. 

4. G is connected and the set of edges of G that are not cut edges forms a 

cycle. 

 

4.3  Centers and Centroids: 

Definitions 4.3.1. Let G be a connected graph. 

1. The diameter of G is defined as max {𝑑(𝑢, 𝑣): 𝑢, 𝑣 ∈ 𝑉(𝐺)} and is 

denoted by  𝑑𝑖𝑎𝑚 (𝐺). 

2. If v is a vertex of G, its eccentricity 𝑒(𝑣) is defined by  

𝑒(𝑣) = max{𝑑(𝑣, 𝑢)}: 𝑢 ∈ 𝑉(𝐺)}.  
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3. The radius 𝑟(𝐺) of G is the minimum eccentricity of G;   

that is, 𝑟(𝐺) = min{𝑒(𝑣): 𝑣 ∈ 𝑉(𝐺)}. 

Note that 𝑑𝑖𝑎𝑚 (𝐺) = max{𝑒(𝑣): 𝑣 ∈ 𝑉(𝐺)}. 

4. A vertex v of G is called a central vertex if 𝑒(𝑣) = 𝑟(𝐺).  

The set of central vertices of G is called the center of G. 

 

Example 4.3.2: 

Figure 4.3 displays two graphs T and G with the eccentricities of their vertices.  

We find that 𝑟(𝑇) = 4 and 𝑑𝑖𝑎𝑚(𝑇) = 7. Each of u and v is a central vertex of 

T.  

Also,  

 𝑟(𝐺) = 3 and 𝑑𝑖𝑎𝑚(𝐺) = 4. Further, G has five central vertices. 
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Theorem 4.3.4 (Jordan [117]):  

Every tree has a center consisting of either a single vertex or two adjacent 

vertices. 

Proof:   

           The result is obvious for the trees K1 and K2.  

           The vertices of K1 and K2 are central vertices.  

Now, 

            let T be a tree with 𝑛(𝑇) ≥ 3.  

Then, 

             T has at least two pendant vertices.  

Clearly,  

             the pendant vertices of T cannot be central vertices.  

Delete all the pendant vertices from T.  

             This results in a subtree 𝑇′  of T.  

             As any maximum-distance path in T from any vertex of  𝑇′ ends at a 

pendant vertex of T, the eccentricity of each vertex of 𝑇′ is one less than the 

eccentricity of the same vertex in T.  

Hence,  

             the vertices of minimum eccentricity of 𝑇′ are the same as those of T. 

In other words,  

              T and 𝑇′ have the same center.  

Now,  

             If 𝑇′′ is the tree obtained from 𝑇′ by deleting all the pendant vertices 

of 𝑇′, then 𝑇′′and 𝑇′ have the same center.  

             Hence the centers of  𝑇′′ and T are the same.  

Repeat the process of deleting the pendant vertices in the successive subtrees of 

T until there results a K1 or K2.  
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            This will always be the case as T is finite.  

Hence,  

            the center of T is either a single vertex or a pair of adjacent vertices.  

 

Note: 

The process of determining the center described above is illustrated in 

Figure 4.4 for the tree T of Figure 4.3. We observe that the center of T consists 

of the pair of adjacent vertices v2 and v3. 
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Exercise 3.1. Construct a tree with 85 vertices that has 𝛥 = 5 and the center 

consisting of a single vertex. 

 

4.4  Counting the Number of Spanning Trees: 

Counting the number of spanning trees in a graph occurs as a natural 

problem in many branches of science. Spanning trees were used by Kirchoff to 

generate a “cycle basis” for the cycles in the graphs of electrical networks. In this 

section, we consider the enumeration of spanning trees in graphs. 

 

The number of spanning trees of a connected labeled graph G will be 

denoted by 𝜏(𝐺). If G is disconnected, we take  𝜏(𝐺) = 0. There is a 

recursive formula for 𝜏(𝐺). Before we establish this formula, we shall 

define the concept of edge contraction in graphs. 

 

Definition 4.4.1: 

An edge e of a graph G is said to be contracted if it is deleted from G and its 

ends are identified. The resulting graph is denoted by 𝐺 ◦ 𝑒. 

 

Edge contraction is illustrated in Figure 4.7. 
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If e is not a loop of G,  

Then, 

 𝑛(𝐺 ◦ 𝑒) = 𝑛(𝐺) − 1, 𝑚(𝐺 ◦ 𝑒) = 𝑚(𝐺) − 1 and 𝜔(𝐺 ◦ 𝑒) = 𝜔(𝐺). 

For a loop e,  

𝑛(𝐺 ◦ 𝑒) = 𝑛(𝐺), 𝑚(𝐺 ◦ 𝑒) = 𝑚(𝐺) − 1 and 𝜔(𝐺 ◦ 𝑒) = 𝜔(𝐺). 

 

Theorem 4.4.2 gives a recursive formula for 𝜏(𝐺). 

 

Theorem 4.4.2.  

If e is not a loop of a connected graph 𝐺, 𝜏(𝐺) = 𝜏(𝐺 − 𝑒) + 𝜏(𝐺 ◦ 𝑒). 

Proof:  

𝜏(𝐺) is the sum of the number of spanning trees of G containing e and 

the number of spanning trees of G not containing e. 

Since 𝑉(𝐺 − 𝑒) = 𝑉(𝐺),  

         every spanning tree of 𝐺 − 𝑒  is a spanning tree of G not containing e,  

and conversely,  

any spanning tree of G for which e is not an edge is also a spanning tree 

of 𝐺 − 𝑒.  

Hence,  

the number of spanning trees of G not containing e is precisely the 

number of spanning trees of 𝐺 − 𝑒, that is,  𝜏(𝐺 − 𝑒).  

If T is a spanning tree of G containing e,  

the contraction of e in both T and G results in a spanning tree 𝑇 ◦ 𝑒 of 

𝐺 ◦ 𝑒. 

  

Conversely,  

                  if T0 is a spanning tree of 𝐺 ◦ 𝑒,  

there exists a unique spanning tree T of G containing e such that 𝑇 ◦ 𝑒 = 𝑇0. 
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Thus,  

           the number of spanning trees of G containing e is 𝜏(𝐺 ◦ 𝑒).  

Hence,   

            𝜏(𝐺) = 𝜏(𝐺 − 𝑒) + 𝜏(𝐺 ◦ 𝑒). 

 

We illustrate below the use of Theorem 4.4.2 in calculating the number of 

spanning trees. In this illustration, each graph within parentheses stands for 

the number of its spanning trees.  

 

For example,    

 stands for the number of spanning trees of 𝐶4. 

 

Example 4.4.3: 

Find 𝜏(𝐺) for the following graph G: 
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Hence, 

   𝜏(𝐺) = 12. 

 

We have seen that every connected graph has a spanning tree. When will it 

have k edge-disjoint spanning trees? An answer to this interesting question was 

given by both Tutte [181] and Nash-Williams [145] at just about the same time. 

 

Theorem 4.4.4 (Tutte [181]; Nash-Williams [145]):  

A simple connected graph G contains k pairwise edge-disjoint spanning trees if 

and only if for each partition P of 𝑉(𝐺) into p parts, the number m(P)of edges 

of G joining distinct parts is at least 𝑘(𝑝 − 1), 2 ≤ 𝑝 ≤ |𝑉(𝐺)|. 

Proof: 

 We prove only the easier part of the theorem (necessity of the condition). 

Suppose G has k pairwise edge-disjoint spanning trees.  

If T is one of them and if 𝑃 = {𝑉1, 𝑉2, … , 𝑉𝑝} is a partition of V(G) into p 
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parts, then G must have at least |𝑃| − 1 edges of T .  

As this is true for each of the k pairwise edge-disjoint trees of G, the 

number of edges joining distinct parts of P is at least 𝑘(𝑝 − 1). 

 

4.5 Cayley’s Formula: 

Cayley was the first mathematician to obtain a formula for the number of 

spanning trees of a labeled complete graph. 

 

Theorem 4.5.1 (Cayley [33]): 

𝜏(𝐾𝑛) = 𝑛𝑛−2, where 𝐾𝑛 is a labeled complete graph on 𝑛 vertices, 𝑛 ≥ 2. 

Proof: 

First to prove the following two lemmas. 

 

1. Let {𝑑1, 𝑑2, … , 𝑑𝑛}  be the sequence of positive integers such that 

∑ 𝑑𝑖 = 2(𝑛 − 1)𝑛
𝑖=1 . Then there exist a tree T with vertex set 

{𝑣1, 𝑣2, … , 𝑣𝑛} and 𝑑(𝑣𝑖) = 𝑑𝑖 , 1 ≤ 𝑖 ≤ 𝑛. 

 

2. Let {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝑛 ≥ 2 be given and let {𝑑1, 𝑑2, … , 𝑑𝑛} be the 

sequence of positive integers such that ∑ 𝑑𝑖 = 2(𝑛 − 1)𝑛
𝑖=1 . Then the 

number of trees with {𝑣1, 𝑣2, … , 𝑣𝑛} as the vertex set in which 𝑣𝑖 has 

degree 𝑑𝑖 , 1 ≤ 𝑖 ≤ 𝑛 is 
(𝑛−2)!

(𝑑1−1)!(𝑑2−1)!… (𝑑𝑛−1)!
. 

 

Proof of the theorem: 

 

 The total number of trees 𝑇𝑛 with vertex set {𝑣1, 𝑣2, … , 𝑣𝑛} is obtained 

by summing over all possible sequences {𝑑1, 𝑑2, … , 𝑑𝑛} with ∑ 𝑑𝑖 = 2𝑛 − 2𝑛
𝑖=1  
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Hence, 

        𝜏(𝐾𝑛) = ∑
(𝑛−2)!

(𝑑1−1)!(𝑑2−1)!… (𝑑𝑛−1)!𝑑𝑖≥1  with ∑ 𝑑𝑖 = 2𝑛 − 2𝑛
𝑖=1  

 

          = ∑
(𝑛−2)!

𝑘1! 𝑘2!….𝑘𝑛!𝑑𝑖≥1  ∑ 𝑘𝑖 = 𝑛 − 2𝑛
𝑖=1  where 𝑘𝑖 = 𝑑𝑖 − 1, 1 ≤ 𝑖 ≤ 𝑛. 

 

Putting 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 1 and 𝑚 = 𝑛 − 2 in the multinomial expansion 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)𝑚 = ∑
𝑥1

𝑘1𝑥2
𝑘2…𝑥𝑛

𝑘𝑛

𝑘1! 𝑘2!….𝑘𝑛!𝑑𝑖≥1 𝑚! with  (𝑘1 + 𝑘2 + ⋯ + 𝑘𝑛) = 𝑚 

 

we get, 

𝑛𝑛−2 = ∑
(𝑛−2!)

𝑘1! 𝑘2!….𝑘𝑛!𝑘𝑖≥1 𝑚! with  (𝑘1 + 𝑘2 + ⋯ + 𝑘𝑛) = 𝑛 − 2. 

Thus, 

 𝜏(𝐾𝑛) = 𝑛𝑛−2. 
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UNIT-IV:  

Independent Sets and Matchings: Vertex Independent Sets and Vertex 

Coverings - Edge Independent Sets - Matchings and Factors - Matching in Bi-

partite Graphs - Perfect Matching and the Tutte Matrix. 

Chapter 5: Section 5.1 to 5.6. 

 

5.Independent Sets and Matchings: 

5.1 Introduction: 

Vertex-independent sets and vertex coverings as also edge-independent 

sets and edge coverings of graphs occur very naturally in many practical 

situations and hence have several potential applications. In this chapter, we 

study the properties of these sets. In addition, we discuss matchings in graphs 

and, in particular, in bipartite graphs. Matchings in bipartite graphs have varied 

applications in operations research. We also present two celebrated theorems of 

graph theory, namely, Tutte’s 1-factor theorem and Hall’s matching theorem. All 

graphs considered in this chapter are loopless. 

5.2 Vertex-Independent Sets and Vertex Coverings: 

Definition 5.2.1.  

A subset S of the vertex set V of a graph G is called independent if no two 

vertices of S are adjacent in 𝐺. 𝑆 ⊆  𝑉 is a maximum independent set of G if 

G has no independent set 𝑆′ with  |𝑆′| > |𝑆|  . A maximal independent set of G 

is an independent set that is not a proper subset of another independent set of G. 

For example,  

in the graph of Figure 5.1, {𝑢, 𝑣, 𝑤} is a maximum independent set and 

{𝑥, 𝑦} is a maximal independent set that is not maximum. 
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Definition 5.2.2.  A subset K of V is called a covering of G if every edge of 

G is incident with at least one vertex of K. A covering K is minimum if there 

is no covering 𝐾′of G such that |𝐾′| < |𝐾| it is minimal if there is no covering 

K1 of G such that K1 is a proper subset of K. 

 

In the graph W5   of Figure 5.2,    {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} is a covering of W5   

and  {𝑣1, 𝑣3, 𝑣4, 𝑣6} is a minimal covering. Also, the set  {𝑥, 𝑦}   is a minimum 

covering of Figure 5.1. 

 

The concepts of covering and independent sets of a graph arise very 

naturally in practical problems. Suppose we want to store a set of chemicals in 

different rooms. Naturally, we would like to store incompatible chemicals, that 

is, chemicals that are likely to react violently when brought together, in distinct 

rooms. Let G be a graph whose vertex set represents the set of chemicals and let 

two vertices be made adjacent in G if and only if the corresponding chemicals 

are incompatible. Then any set of vertices representing compatible chemicals 

forms an independent set of G. 
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Now consider the graph G whose vertices represent the various locations 

in a factory and whose edges represent the pathways between pairs of such 

locations. A light source placed at a location supplies light to all the pathways 

incident to that location. A set of light sources that supplies light to all the 

pathways in the factory forms a covering of G. 

 

Theorem 5.2.3:  

A subset S of V is independent if and only if  𝑉\𝑆  is a covering of G. 

Proof:  

S is independent if and only if no two vertices in S are adjacent in G.  

Hence,  

every edge of G must be incident to a vertex of 𝑉\𝑆. 

This is the case if and only if 𝑉\𝑆 is a covering of G. 

 

5.3 Edge-Independent Sets: 

Definitions 5.3.1.  

1. A subset M of the edge set E of a loop-less graph G is called 

         independent if no two edges of M are adjacent in G.  A matching in G is a   

         set of independent edges. 

2. An edge covering of G is a subset L of E such that every vertex of G is 

incident to some edge of L. Hence, an edge covering of G exists if and 

only if 𝛿 > 0. 

3. A matching M of G is maximum if G has no matching 𝑀′ with |𝑀′| >

|𝑀|.  M is maximal if G has no matching 𝑀′ strictly containing M. 𝛼′(𝐺)  

is  the cardinality of a maximum matching and 𝛽′(𝐺) is the size of a 

minimum edge covering of G. 

4. A set S of vertices of G is said to be saturated by a matching M of G or 

M- saturated if every vertex of S is incident to some edge of M.  A vertex 
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v of G is M-saturated if {𝑣} is M -saturated. v is M-unsaturated if it is 

not M -saturated. 

 

For example, in the wheel W5 (Figure 5.2), 𝑀 = {𝑣1𝑣2, 𝑣4𝑣6} is a maximal 

matching; {𝑣1𝑣5, 𝑣2𝑣3, 𝑣4𝑣6} is a maximum matching and a minimum edge 

covering;  the vertices 𝑣1, 𝑣2, 𝑣4, and 𝑣6 are M -saturated, whereas 𝑣3 and 𝑣5 are 

M -unsaturated 

 

5.4 Matchings and Factors: 

Definition 5.4.1.  

A matching of a graph G is a set of independent edges of G. If 𝑒 = 𝑢𝑣 is an 

edge of a matching M of G, the end vertices u and v of e are said to be matched 

by M. 

If M1 and M2 are matchings of G, the edge subgraph defined by 

M1∆M2, the symmetric difference of M1 and M2, is a subgraph H of G whose 

components are paths or even cycles of G in which the edges alternate between 

M1 and M2. 

 

Definition 5.4.2. An M-augmenting path in G is a path in which the edges 

alternate between 𝐸\𝑀 and M and its end vertices are M -unsaturated. An M- 

alternating path in G is a path whose edges alternate between 𝐸\𝑀 and M. 

 

Example 5.4.3:  

In the graph G of Figure 5.2, 𝑀1 = {𝑣1𝑣2, 𝑣3𝑣4, 𝑣5𝑣6}, 

𝑀2 = {𝑣1𝑣2, 𝑣3𝑣6, 𝑣4𝑣5} and 𝑀1 = {𝑣3𝑣4, 𝑣5𝑣6} are matching G.  
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Moreover,  

G[M1∆M2]is an even cycle (𝑣3𝑣4𝑣5𝑣6𝑣3). 

The path 𝑣2𝑣3𝑣4𝑣6𝑣5 is an 𝑀5-augmenting path in G.  

 

Maximum matchings have been characterized by Berge [19]. 

Theorem 5.4.4. A matching M of a graph G is maximum if and only if G has 

no M-augmenting path. 

Proof: 

Assume first that M is maximum.  

If G has an M -augmenting path P:   𝑣0𝑣1𝑣2 … 𝑣2𝑡+1  in which the edges 

alternate between 𝐸\𝑀 and M, then P has one edge of 𝐸\𝑀 more than that 

of M.  

Define 𝑀′ = 𝑀 ∪ { 𝑣0𝑣1,  𝑣2𝑣3, … ,  𝑣2𝑡𝑣2𝑡+1}\ 𝑣1𝑣2,  𝑣3𝑣4, … ,  𝑣2𝑡−1𝑣2𝑡 

Clearly, 𝑀′ is a maximum matching of G. 

 

Conversely,  

assume that G has no M -augmenting path.  

Then M must be maximum.  

If not, there exists a matching  𝑀′  of G with  |𝑀′| > |M |.  

Let H be the edge subgraph 𝐺[ 𝑀∆𝑀′] defined by the symmetric 

difference of M  and 𝑀′.   

Then, 

the components of H are paths or even cycles in which the edges 

alternate between M and 𝑀′.  

 

Since |𝑀′ | > |M|, at least one of the components of H must be a path 

starting and ending with edges of 𝑀′ .  
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But then such a path is an M -augmenting path of G, contradicting the 

assumption (see Figure 5.5). 

 

 

Definition 5.4.5: 

A factor of a graph G is a spanning subgraph of G.  A k-factor of G is a factor 

of G that is k-regular. Thus, a 1-factor of G is a matching that saturates all the 

vertices of G. For this reason, a 1-factor of G is called a perfect matching of G. 

A 2-factor of G is a factor of G that is a disjoint union of cycles of G. A graph 

G is k-factorable if G is an edge-disjoint union of k-factors of G. 

 

Example 5.4.6:  

In Figure 5.6,  

G1 is 1-factorable and G2 is 2-factorable, whereas G3 has neither a 1-factor nor 

a 2-factor.  

The dotted, solid, and ordinary lines of G1 give the three distinct 1-factors, and 

the dotted and ordinary lines of G2 give its two distinct 2-factors. 
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Exercise 4.1. Give an example of a cubic graph having no 1-factor. 

Exercise 4.2. Show that Kn,n and K2n are 1-factorable. 

Exercise 4.3. Show that the number of 1-factors of  

(i) 𝐾𝑛,𝑛 is n! 

(ii) 𝐾2𝑛  is 
(2𝑛)!

2𝑛𝑛!
. 

 

 

 

 



 

     90 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

5.5 Matchings in Bipartite Graphs: 

 

Assignment Problem 5.5.1.  

Suppose in a factory there are n jobs 𝑗1, 𝑗2, … , 𝑗𝑛 and s workers 𝑤1, 𝑤2, … , 𝑤𝑛. 

Also suppose that each job 𝑗𝑖 can be performed by a certain number of workers 

and that each worker 𝑤𝑗  has been trained to do a certain number of jobs. Is it 

possible to assign each of the n jobs to a worker who can do that job so that 

no two jobs are assigned to the same worker? 

 

We convert this job assignment problem into a problem in graphs as 

follows:  

Form a bipartite graph G with bipartition (𝐽, 𝑊), where 𝐽 =

{𝑗1, 𝑗2, … , 𝑗𝑛} and 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛} and make 𝑗𝑖 adjacent to 𝑤𝑗 if and only 

if worker 𝑤𝑗  can do the job 𝑗𝑖. Then our assignment problem translates into the 

following graph problem: Is it possible to find a matching in G that saturates all 

the vertices of J ? 

 

A solution to the above matching problem in bipartite graphs has been 

given by Hall [90] (see also Hall, Jr. [91]). 

 

For a subset 𝑆 ⊆ 𝑉  in a graph G, N(S) denotes the neighbor set of S, that is, 

the set of all vertices each of which is adjacent to at least one vertex in S. 

 

Theorem 5.5.2 (Hall). Let G be a bipartite graph with bipartition (𝑋, 𝑌).  Then 

G has a matching that saturates all the vertices of X if and only if 

|𝑁(𝑆)| ≥ |𝑆|            …………….(5.3) 

for every subset S of X. 
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Proof: 

 If G has a matching that saturates all the vertices of X, then distinct  

vertices of X are matched to distinct vertices of Y.  

Hence,  

trivially,  

|𝑁(𝑆)| ≥ |𝑆|  for every subset S X. 

 

Conversely,  

assume that the condition (5.3) above holds but that G has no matching 

that saturates all the vertices of X.  

Let M be a maximum matching of G.  

As M does not saturate all the vertices of X, there exists a vertex 𝑥0 ∈ 𝑋 that 

is M -unsaturated.  

Let Z denote the set of all vertices of G connected to 𝑥0 by M - alternating 

paths.  

Since M is a maximum matching,  

by Theorem,  

G has no M -augmenting path.  

 

As 𝑥0 is M -unsaturated,  

𝑥0 is the only vertex of Z that is M - unsaturated.  

Let 𝐴 = 𝑍 ∩ 𝑋 and 𝐵 = 𝑍 ∩ 𝑌.  

Then the vertices of 𝐴\{𝑥0} get matched under M to the vertices of B, 

and 𝑁(𝐴) = 𝐵.  

Thus,  

since |𝐵| = |𝐴| − 1, |𝑁(𝐴)| = |𝐵| = |𝐴| − 1 < |𝐴| 

and this contradicts the assumption (5.3). 

 



 

     92 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

5.6 Perfect Matchings and the Tutte Matrix: 

It has been established by Tutte that the existence of a perfect matching 

in a simple graph is related to the non-singularity of a certain square matrix. This 

matrix is called the “Tutte matrix” of the graph. We now define the Tutte matrix 

 

Definition 5.6.1: 

Let 𝐺 = (𝑉, 𝐸) be a simple graph of order 𝑛 and let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}. 

Let {𝑥𝑖𝑗: 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛} be a set of indeterminates. Then, the Tutte matrix of 𝐺 

is defined to be the 𝑛 by 𝑛 matrix 𝑇 = (𝑡𝑖𝑗), where, 

 

𝑡𝑖𝑗 = {

𝑥𝑖𝑗          𝑖𝑓     𝑣i𝑣j ∈ 𝐸(𝐺) 𝑎𝑛𝑑 𝑖 < 𝑗

−𝑥𝑖𝑗       𝑖𝑓    𝑣i𝑣j ∈ 𝐸(𝐺) 𝑎𝑛𝑑 𝑖 > 𝑗 

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus,  

𝑇 is a skew-symmetric matrix of order 𝑛. 

 

Example 5.6.2: 

For example, if 𝐺 is the graph 
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UNIT-V:  

Eulerian and Hamiltonian Graphs: Eulerian Graphs - Hamiltonian 

Graphs - Hamilton's "Around the World" Game. 

Graph Colorings: Vertex Colorings - Applications of Graph Colorings - 

Critical Graphs - Brooks' Theorem. 

Chapter 6: Section 6.1 to 6.3, 

Chapter 7: Section 7.1 to 7.3 (up to Brooks Theorem). 

 

 

6. Eulerian and Hamiltonian Graphs: 

6.1 Introduction: 

The study of Eulerian graphs was initiated in the 18th century and that of 

Hamiltonian graphs in the 19th century. These graphs possess rich structures; 

hence, their study is a very fertile field of research for graph theorists. In this 

chapter, we present several structure theorems for these graphs. 

 

6.2 Eulerian Graphs: 

Definition 6.2.1: 

An Euler trail in a graph G is a spanning trail in G that contains all the 

edges of G. An Euler tour of G is a closed Euler trail of G. G is called Eulerian 

(Figure 6.1a) if G has an Euler tour. It was Euler who first considered these 

graphs, and hence their name. 

 

It is clear that an Euler tour of G, if it exists, can be described from any 

vertex of G. Clearly, every Eulerian graph is connected. 
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Euler showed in 1736 that the celebrated Kö nigsberg bridge problem has 

no solution. The city of Kö nigsberg (now called Kaliningrad) has seven bridges 

linking two islands A and B and the banks C and D of the Pregel (now called 

Pregalya) River, as shown in Figure 6.2. 

 

The problem was to start from any one of the four land areas, take a stroll 

across the seven bridges, and get back to the starting point without crossing any 

bridge a second time. This problem can be converted into one concerning the 

graph obtained by representing each land area by a vertex and each bridge by an 

edge. The resulting graph H is the graph of Figure 6.1b.  The Königsberg bridge 

problem will have a solution provided that this graph H is Eulerian. But this 

is not the case since it has vertices of odd degrees (see Theorem 6.2.2). 

Eulerian graphs admit, among others, the following two elegant characteriza- 

tions. 
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Theorem 6.2.2:  

For a nontrivial connected graph G, the following statements are equivalent: 

(i) G is Eulerian. 

(ii) The degree of each vertex of G is an even positive integer. 

(iii) G is an edge-disjoint union of cycles. 

Proof:  

To Prove: (𝑖) ⇒  (𝑖𝑖) 

    Let T be an Euler tour of G described from some vertex 𝑣0 ∈ 𝑉(𝐺). 

If  𝑣 ∈ 𝑉(𝐺), and v≠v0,  

        then every time T   enters v, it must move out of v to get back to v0.  

Hence, 

two edges incident with v are used during a visit to v,  

and therefore, d(v) is even.  

At v0, every time T moves out of v0, it must get back to v0.  

Consequently, 𝑑(𝑣0) is also even.  

Thus,  

the degree of each vertex of G is even. 

 

To Prove: (𝑖𝑖) ⇒  (𝑖𝑖𝑖) 

As 𝛿(𝐺) ≥ 2,  

 G contains a cycle C1. 

  In 𝐺\𝐸(𝐶1),  

 remove the isolated vertices if there are any.  

 Let the resulting subgraph of G be G1.  
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 If G1 is nonempty, each vertex of G1 is again of even positive degree. 

Hence 𝛿(𝐺1) ≥ 2,  

 and so G1 contains a cycle C2.  

It follows that after a finite number, say r, of steps, 𝐺\𝐸(𝐶1 ∪ 𝐶2 ∪ … ∪ 𝐶𝑟) is 

totally disconnected.  

Then, 

 G is the edge- disjoint union of the cycles 𝐶1, 𝐶2, … , 𝐶𝑟. 

 

To Prove: (𝑖𝑖𝑖) ⇒  (𝑖) 

Assume that G is an edge-disjoint union of cycles.  

Since any cycle is Eulerian, G certainly contains an Eulerian subgraph.  

Let G1 be a longest closed trail in G.  

Then, 

G1 must be G.  

If not,  

let 𝐺2 = 𝐺\𝐸(𝐺1).  

Since G is an edge- disjoint union of cycles,  

every vertex of G is of even degree ≥ 2.  

Further,  

since G1 is Eulerian, each vertex of G1 is of even degree ≥ 2.  

Hence, 

each vertex of G2 is of even degree.  

 

Since G2 is not totally disconnected and G is connected,  

G2 contains a cycle C having a vertex v in common with G1.  

Describe the Euler tour of 𝐺1 starting and ending at v and follow it by C.  
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Then, 

𝐺1 ∪ 𝐶 is a closed trail in G longer than 𝐺1.  

This contradicts the choice of 𝐺1, 

and so 𝐺1 must be G.  

Hence,  

G is Eulerian. 

 

Remark: 

If 𝐺1, 𝐺2, … , 𝐺𝑟  are subgraphs of a graph G that are pairwise edge-disjoint 

and their union is G, then this fact is denoted by writing  

𝐺 = 𝐺1 ⊕  𝐺2 ⊕ … ⊕ 𝐺𝑟. 

In the above equation, if 𝐺𝑖 = 𝐶𝑖, a cycle of G for each 𝑖,  

then 

 𝐺 = 𝐶1 ⊕  𝐶2 ⊕ … ⊕ 𝐶𝑟. 

 

The set of cycles 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑟} is then called a cycle decomposition of G. 

Thus, 

Theorem 6.2.2 implies that a connected graph is Eulerian if and only if it 

admits a cycle decomposition. 

 

 

Theorem 6.2.3*: 

A graph G is Eulerian if and only if each edge e of G belongs to an odd number 

of cycles of G. 

For instance, in Fig. 6.3, 𝑒 belongs to the three cycles 𝑃1 ∪ 𝑒, 𝑃2 ∪ 𝑒, 

and 𝑃3 ∪ 𝑒. 
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Proof: 

Denote by 𝛾𝑒 the number of cycles of G containing 𝑒.  

Assume that 𝛾𝑒 is odd for each edge e of G.  

Since a loop at any vertex v of G is in exactly one cycle of G and contributes 2 

to the degree of v in G,  

we may suppose that G is loop-less. 

 

Let 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑝} be the set of cycles of G.  

Replace each edge e of G by 𝛾𝑒 parallel edges and replace e in each 

of the 𝛾𝑒 cycles containing e by one of these parallel edges, making sure that 

none of the parallel edges is repeated.  

Let the resulting graph be 𝐺0 and let the new set of cycles be  

𝑆0 = {𝐶1
0, 𝐶2

0, … , 𝐶𝑝
0}. 

Clearly,  

𝑆0 is a cycle decomposition of 𝐺0.  

Hence, by Theorem 6.2.2, 𝐺0 is Eulerian.  

But, 

then 𝑑𝐺0
(𝑣) ≡ 0 (𝑚𝑜𝑑  2) for each 𝑣 ∈ 𝑉(𝐺0) = 𝑉(𝐺).  

Moreover, 

 𝑑𝐺(𝑣) ≡ 𝑑𝐺0
(𝑣) − ∑ (𝛾𝑒 − 1)𝑒 , where e is incident at v in G and 

hence 𝑑𝐺(𝑣) ≡ 0 (𝑚𝑜𝑑 2),  𝛾𝑒 being odd for each 𝑒 ∈ 𝐸(𝐺). 

Thus,  

 G is Eulerian. 
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Conversely,  

assume that G is Eulerian.  

We proceed by induction on 𝑛 = |𝑉(𝐺)|. 

If 𝑛 = 1, each edge is a loop and hence belongs to exactly one cycle of 𝐺. 

 

Assume the result for graphs with fewer than 𝑛(≥ 2) vertices. 

Let G be a graph with n vertices.  

Let 𝑒 = 𝑥𝑦 be an edge of G and let 𝜆(𝑒) be the multiplicity of 𝑒 in G. 

The graph 𝐺 ◦ 𝑒 obtained from G by contracting the edge e is also Eulerian. 

Denote by 𝑧 the new vertex of 𝐺 ◦ 𝑒 obtained by identifying the vertices 𝑥 and 

𝑦 of G.  

The set of edges incident with 𝑧 in 𝐺 ◦ 𝑒 is partitioned into three subsets (see 

Figure 6.4): 

1. 𝐸𝑧(𝑥) = set of edges arising out of edges of G incident with 𝑥 but not with 𝑦 

2. 𝐸𝑧(𝑦) = set of edges arising out of edges of G incident with 𝑦 but not with 𝑥 

3. 𝐸𝑧(𝑥𝑦) =set of 𝜆(𝑒) − 1 loops of 𝐺 ◦ 𝑒 corresponding to the edges parallel 

to 𝑒 in G 
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Let 𝑘 = |𝐸𝑧(𝑥)|. 

Since G is Eulerian, 

 𝑘 + 𝜆(𝑒) = 𝑑𝐺(𝑥) ≡ 0  (𝑚𝑜𝑑  2). 

Let Ґ𝑓 and Ґ(𝑒𝑖, 𝑒𝑗 ) denote, respectively, the number of cycles in 𝐺 ◦ 𝑒 

containing the edge f and the pair (𝑒𝑖, 𝑒𝑗 ) of edges.  

Since |𝑉(𝐺 ◦ 𝑒)| = 𝑛 − 1, 

and since 𝐺 ◦ 𝑒 is Eulerian by the induction assumption, Ґ𝑓 is odd for 

each edge 𝑓 of 𝐺 ◦ 𝑒. 

Now,  

any cycle of G containing e either consists of e and an edge parallel 

to 𝑒 in G (and there are 𝜆(𝑒) − 1 of them) or contains e, an edge 𝑒𝑖 of 𝐸𝑧(𝑥), 

and an edge 𝑒𝑗
′ of 𝐸𝑧(𝑦). 

 

These correspond in 𝐺 ◦ 𝑒, respectively, to a loop at z and to a cycle 

containing the edges of 𝐺 ◦ 𝑒 that correspond to the edges 𝑒𝑖 and  𝑒𝑗
′ of G.  

By abuse of notation, we denote these corresponding edges of 𝐺 ◦ 𝑒  also by 𝑒𝑖 

and 𝑒𝑗
′, respectively.  
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Moreover,  

any cycle of 𝐺 ◦ 𝑒 containing an edge  𝑒𝑖 of 𝐸𝑧(𝑥) will also contain either 

an edge 𝑒𝑗 of 𝐸𝑧(𝑥) or an edge  𝑒𝑗
′ of 𝐸𝑧(𝑦) but not both.  

A cycle of the former type is counted once in Ґ𝑒𝑖
 and once in   Ґ𝑒𝑗

, and 

these will not give rise to cycles in G containing e.  

Thus, 

 𝛾𝑒 = (𝜆(𝑒) − 1) + ∑ Ґ𝑒𝑖
− ∑ Ґ(𝑒𝑖 , 𝑒𝑗  ){𝑖,𝑗}

𝑖≠𝑗
𝑒𝑖,𝑒𝑗 ∈𝐸𝑧(𝑥)

𝑒𝑖∈𝐸𝑧(𝑥)  

Now,  

by the induction hypothesis,  

Ґ𝑒𝑖
≡ 1 (𝑚𝑜𝑑  2) for each 𝑒𝑖, and Ґ(𝑒𝑖 , 𝑒𝑗 ) = Ґ(𝑒𝑗, 𝑒𝑖  ) in the last sum on 

the right,  

and hence this latter sum is even.  

 

Thus, 

 (𝜆(𝑒) − 1) + 𝑘 (𝑚𝑜𝑑  2) ≡ 1 (𝑚𝑜𝑑  2). 

 

Corollary 6.2.4*. A graph is Eulerian if and only if it has an odd number of 

cycle decompositions. 

Proof:  

In one direction, the proof is trivial.  

If G has an odd number of cycle decompositions,  

then it has at least one,  

and hence G is Eulerian. 
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Conversely, 

assume that G is Eulerian.  

Let 𝑒 ∈ 𝐸(𝐺) and let 𝐶1, 𝐶2, … , 𝐶𝑟 be the cycles containing e.  

By Theorem 6.2.3, 

r is odd. We proceed by induction on 𝑚 = |𝐸(𝐺)| with G Eulerian. 

If G is just a cycle,  

then the result is true.  

Assume then that G is not a cycle.  

This means that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑟,  

by the induction assumption, 𝐺𝑖 = 𝐺 − 𝐸(𝐶𝑖) has an odd number, say si, 

of cycle decompositions.  

(If Gi is disconnected, apply the induction assumption to each of the 

nontrivial components of Gi.)  

The union of each of these cycle decompositions of Gi and Ci yields a 

cycle decomposition of G. Hence the number of cycle decompositions of G 

containing Ci is si  1 ≤ 𝑖 ≤ 𝑟.  

Let s(G) denote the number of cycle decompositions of G.  

Then, 

 𝑠(𝐺) = ∑ 𝑠𝑖 ≡ 𝑟 (𝑚𝑜𝑑  2)𝑟
𝑖=1  (Since 𝑠𝑖 ≡ 1 (𝑚𝑜𝑑  2)) 

         ≡ 1 (𝑚𝑜𝑑  2) 
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Exercise 2.1. Find an Euler tour in the graph G below. 

 

 

6.3 Hamiltonian Graphs: 

 

Definition 6.3.1. A graph is called Hamiltonian if it has a spanning cycle (see 

Figure 6.5a). These graphs were first studied by Sir William Hamilton, a mathemati- 

cian. A spanning cycle of a graph G, when it exists, is often called a Hamilton 

cycle (or Hamiltonian cycle) of G. 

Definition 6.3.2. A graph G is called traceable if it has a spanning path of G 

(see Figure 6.5b). A spanning path of G is also called a Hamilton path (or 

Hamiltonian path) of G. 
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6.3.1 Hamilton’s “Around the World” Game: 

Hamilton introduced these graphs in 1859 through a game that used a 

solid dodecahedron (Figure 6.6). A dodecahedron has 20 vertices and 12 

pentagonal faces. At each vertex of the solid, a peg was attached. The vertices 

were marked Amsterdam, Ann Arbor, Berlin, Budapest, Dublin, Edinburgh, 

Jerusalem, London, Melbourne, Moscow, Novosibirsk, New York, Paris, Peking, 

Prague, Rio di Janeiro, Rome, San Francisco, Tokyo, and Warsaw. Further, a 

string was also provided. The object of the game was to start from any one of 

the vertices and keep on attaching the string to the pegs as we move from one 

vertex to another along a particular edge with the condition that we have to get 

back to the starting city without visiting any intermediate city more than once.  

 

 

In other words, the problem asks one to find a Hamilton cycle in the graph of the 

dodecahedron (see Figure 6.6). Hamilton solved this problem as follows: When a 

traveler arrives at a city, he has the choice of taking the edge to his right or left. 

Denote the choice of taking the edge to the right by R and that of taking the 
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edge to the left by L. Let 1 denote the operation of staying where he is. 

Define the product O1O2 of two operations O1 and O2 as O1 followed 

by O2. For example, LR denotes going left first and then going right. Two 

sequences of operations are equal if, after starting at a vertex, the two sequences 

lead to the same vertex. The product defined above is associative but not 

commutative. Further, it is clear (see Figure 6.6) that 

 

                            R5 = L5 = 1  

RL2R = LRL, 

                            LR2L = RLR, 

                            RL3R = L2, and  

                                                                                                 LR3L = R2. 

These relations give 

 

1= R5 = R2R3 = (LR3L)R3 — (LR3)(LR3) = (LR3)2 = (LR2R)2 

= (L(LR3L)R)2 = (L2R3LR)2 = (L2((LR3L)R)LR)2  

= (L3R3LRLR)2 

      =LLLRRRLRLRLLLRRRLRLR 

 

The last sequence of operations contains 20 operations and contains no 

partial sequence equal to 1. Hence, this sequence must represent a Hamilton 

cycle. Thus, starting from any vertex and following the sequence of operations 

(6.2), we do indeed get a Hamilton cycle of the graph of Fig. 6.6. 
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Knight’s Tour in a Chessboard 6.3.3: 

The knight’s tour problem is the problem of determining a closed tour  

through all 64 squares of an 8 8 chessboard by a knight with the condition that 

the knight does not visit any intermediate square more than once. This is 

equivalent to finding a Hamilton cycle in the corresponding graph of 64(= 8 ×

8) vertices in which two vertices are adjacent if and only if the knight can move 

from one vertex to the other following the rules of the chess game. Figure 6.7 

displays a knight’s tour. 

 

 

Even though Eulerian graphs admit an elegant characterization, no decent 

characterization of Hamiltonian graphs is known as yet. In fact, it is one of 

the most difficult unsolved problems in graph theory. (Actually, it is an NP- 

complete problem; see reference [71].) Many sufficient conditions for a graph to 

be Hamiltonian are known; however, none of them happens to be an elegant 

necessary condition. 
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We begin with a necessary condition. Recall that 𝜔(𝐻) stands for the 

number of components of the graph H . 

 

Theorem 6.3.4: 

If G is Hamiltonian, then for every nonempty proper subset S of V,  

𝜔(𝐺 − 𝑆) ≤ |𝑆|. 

Proof:  

Let C be a Hamilton cycle in G.  

Then,  

since C is a spanning subgraph of G, 𝜔(𝐺 − 𝑆) ≤ 𝜔(𝐶 − 𝑆). 

If |𝑆| = 1, 𝐶 − 𝑆 is a path, and therefore 𝜔(𝐶 − 𝑆) = 1 = |𝑆| 

The removal of a vertex from a path P results in one or two components, 

according to whether the removed vertex is an end vertex or an internal vertex of 

P. 

 

Hence,  

           by induction, the number of components in 𝐶 − 𝑆 cannot exceed |𝑆|. 

This proves that 𝜔(𝐺 − 𝑆) ≤ 𝜔(𝐶 − 𝑆) ≤ |𝑆|. 

 

It follows directly from the definition of a Hamiltonian graph or from 

Theorem 6.3.4 that any Hamiltonian graph must be 2-connected. [If G has a cut 

vertex v, then taking 𝑆 = {𝑣}, we see that 𝜔(𝐺 − 𝑆) > |𝑆|.]  

The converse,  

however, is not true.  
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For example, the theta graph of Figure 6.8 is 2-connected but not Hamiltonian. 

Here,  

P stands for a u-v path of any length ≥ 2 containing neither x nor y. 

 

Exercise 3.1. Show by means of an example that the condition in Theorem 

6.3.4 is not sufficient for G to be Hamiltonian. 

 

 

 

7.1. Graph Colorings: 

Graph theory would not be what it is today if there had been no coloring 

problems. In fact, a major portion of the 20th-century research in graph theory 

has its origin in the four-color problem.  

 

In this chapter, we present the basic results concerning vertex colorings 

and edge colorings of graphs. We present one important theorem on graph 

colorings, namely, Brooks’ theorem. 
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Applications of Graph Coloring: 

7.2  Vertex Colorings: 

 

Definition 7.2.1:  

The chromatic number 𝜒(𝐺) of a graph G is the minimum number of 

independent subsets that partition the vertex set of G. Any such minimum 

partition is called a chromatic partition of V(G). 

 

Definition 7.2.2:  

The chromatic number of a graph G is the minimum number of colors 

needed for a proper vertex coloring of G. G is k-chromatic if 𝜒(𝐺) = 𝑘. 

 

Definition 7.2.3: A k-coloring of a graph G is a vertex coloring of G that uses 

at most k colors. 

 

Definition 7.2.4: 

A graph G is said to be k-colorable if G admits a proper vertex coloring 

using at most k colors. 

 

7.3 Critical Graphs: 

Definition 7.3.1: 

A graph G is called critical if for every proper subgraph H of G, 

 𝜒(𝐻) < 𝜒(𝐺).  

 

Equivalently,  
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𝜒(𝐺 − 𝑒) < 𝜒(𝐺) for each edge e of G. 

 Also,  

G is k-critical if it is k-chromatic and critical. 

Exercise 3.1. Prove that any critical graph is connected. 

 

Theorem 7.3.3:  

If G is k-critical, then 𝛿(𝐺) ≥ 𝑘 − 1. 

Proof:  

Suppose 𝛿(𝐺) ≤ 𝑘 − 2. 

Let v be a vertex of minimum degree in G. 

Since G is k-critical,  

 𝜒(𝐺 − 𝑣) = 𝜒(𝐺) − 1 = 𝑘 − 1. 

Hence,  

                 in any proper (𝑘 − 1)- coloring of 𝐺 − 𝑣, at most (𝑘 − 2) colors 

would have been used to color the neighbors of v in G. 

Thus,  

             there is at least one color, say c, that is left out of these   𝑘— 1 colors.  

If v is given the color c, 

              a proper (𝑘 − 1)-coloring of G is obtained.  

             This is impossible since G is k-chromatic.  

Hence,  

              𝛿(𝐺) ≥ 𝑘 − 1. 
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Theorem 7.3.5: 

In a critical graph G, no vertex cut is a clique. 

Proof: 

  Suppose G is a k-critical graph and S is a vertex cut of G that is a clique 

of G  

(i.e., a complete subgraph of G).  

Let 𝐻𝑖 , 1 ≤ 𝑖 ≤ 𝑟, be the components of 𝐺\𝑆, and let 𝐺𝑖 = 𝐺[𝑉(𝐻𝑖) ∪ 𝑆].  

Then, 

                         each Gi is a proper subgraph of G and hence admits a proper 

(𝑘 − 1)-coloring.  

Since S is a clique,  

       its vertices must receive distinct colors in any proper (𝑘 − 1)-coloring of Gi.  

Hence,  

by fixing the colors for the vertices of S, and coloring for each i the 

remaining vertices of Gi so as to give a proper (𝑘 − 1)-coloring of Gi, we obtain 

a proper (𝑘 − 1)-coloring of G. 

This contradicts the fact that G is k-chromatic. (See Figure 7.2). 
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— 

 

7.3.1 Brooks’ Theorem: 

Theorem 7.3.7 (Brooks’ theorem): 

If a connected graph G is neither an odd cycle nor a complete graph, then 

𝜒(𝐺) ≤ ∆(𝐺). 

Proof: 

If ∆(𝐺) ≤ 2, then G is either a path or a cycle.  

For a path G (other than K1 and K2), and for an even cycle G,  

𝜒(𝐺) = 2 = ∆(𝐺). 

According to our assumption,  

G is not an odd cycle.  

So let ∆(𝐺) ≥ 3. 

The proof is by contradiction.  

Suppose the result is not true.  

Then, 

        there exists a minimal graph G of maximum degree ∆(𝐺) = ∆  ≥ 3 such 

that G is not ∆- colorable, but for any vertex v of G, 𝐺 —  𝑣 is ∆-colorable. 

 

Claim 1:  

Let v be any vertex of G. Then in any proper ∆-coloring of 𝐺 − 𝑣, all the  

∆ colors must be used for coloring the neighbors v in G.  

Otherwise,  

if some color 𝑖 is not represented in 𝑁𝐺(𝑣), then v could be colored 

using 𝑖, and this would give a Δ-coloring of G,  

a contradiction to the choice of G.  

Thus,  

G is a Δ-regular graph satisfying Claim 1. 
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For 𝑣 ∈ 𝑉(𝐺), let 𝑁(𝑣) = {𝑣1, 𝑣2, … , 𝑣∆}. 

In a proper Δ-coloring of 𝐺 − 𝑣 = 𝐻, let 𝑣𝑖 receive color 𝑖, 1 ≤ 𝑖 ≤ ∆.  

For 𝑖 ≠ 𝑗, let Hij be the subgraph of H induced by the vertices receiving the 

𝑖th and 𝑗th colors. 

Claim 2:   

𝑣𝑖  and 𝑣𝑗  belong to the same component of 𝐻𝑖𝑗.  Otherwise, the colors 

𝑖  and 𝑗  can be interchanged in the component of 𝐻𝑖𝑗 that contains the vertex 

𝑣𝑗.  

Such an interchange of colors once again yields a proper Δ-coloring of 

H.  

In this new coloring, both 𝑣𝑖  and 𝑣𝑗  receive the same color, namely, i, 

a contradiction to Claim 1.  

This proves Claim 2. 

 

Claim 3:   

If 𝐶𝑖𝑗  is the component of 𝐻𝑖𝑗  containing 𝑣𝑖  and 𝑣𝑗, then 𝐶𝑖𝑗  is a path in 

𝐻𝑖𝑗.   

 

As before,  

𝑁𝐻(𝑣𝑖) contains exactly one vertex of color j.  

Further,  

𝐶𝑖𝑗 cannot contain a vertex, say 𝑦, of degree at least 3; for, if 𝑦 is the 

first such vertex on a 𝑣𝑖 − 𝑣𝑗  path in 𝐶𝑖𝑗  that has been colored, say, with 𝑖, 

then at least three neighbors of 𝑦 in 𝐶𝑖𝑗 have the color j.  

Hence,  
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we can recolor 𝑦 in H with a color different from both i and j; and in 

this new coloring of H; 𝑣𝑖 − 𝑣𝑗  would belong to distinct components of 𝐻𝑖𝑗  (see 

Figure 7.3a).  

(Note that by our choice of y, any 𝑣𝑖 − 𝑣𝑗 path in 𝐻𝑖𝑗 must contain y.)   

          But this contradicts Claim 3. 

Claim 4: 

𝐶𝑖𝑗 ∩ 𝐶𝑖𝑘 = {𝑣𝑖} for 𝑗 ≠ 𝑘. 

Indeed, if 𝑤 ∈ 𝐶𝑖𝑗 ∩ 𝐶𝑖𝑘, 𝑤 ≠ 𝑣𝑖,  then 𝑤 is adjacent to two vertices 

of color 𝑗 on 𝐶𝑖𝑗 and two vertices of color 𝑘 on 𝐶𝑖𝑘.  (see Figure 7.3b) 

 

Again,  

we can recolor w in H by giving a color different from the colors of the 

neighbors of w in H. 

 In this new coloring of H, 𝑣𝑖 and  𝑣𝑗  belong to distinct components of 

𝐻𝑖𝑗,  a contradiction to Claim 2.  

This completes the proof of Claim 4. 

We are now in a position to complete the proof of the theorem.  

By hypothesis,  

G is not complete.  

Hence,  

G has a vertex v; and a pair of nonadjacent vertices  𝑣1 and  𝑣2 in  𝑁𝐺(𝑣). 

Then, 

the 𝑣1 − 𝑣2 path 𝐶12 in 𝐻12 of 𝐻 =  𝐺 −   𝑣 contains a vertex y (≠ v2) 

adjacent to 𝑣1. 

Naturally,  

y would receive color 2. 

Since ∆  ≥ 3, 
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by Claim 1, there exists a vertex 𝑣3 ∈  𝑁𝐺(𝑣). 

Now, 

interchange colors 1 and 3 in the path C13 of H13.  

This would result in a new coloring of  𝐻 =  𝐺 −  𝑣. 

Denote the 𝑣𝑖 − 𝑣𝑗  path in H under this new coloring by 𝐶𝑖𝑗
′
 (see Figure 7.3c). 

Then,  

         𝑦 ∈  𝐶23
′ 

  since 𝑣1  receives color 3 in the new coloring (whereas y  retains color 2).  

Also,  

𝑦 ∈ 𝐶12 − 𝑣1 ⊂ 𝐶12
′. 

Thus, 

 𝑦 ∈  𝐶23
′ ∩ 𝐶12

′. 

This contradicts Claim 4 (since 𝑦 ≠ 𝑣2), 

and the proof is complete. 
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Exercise 3.1. Prove that any critical graph is connected. 

Exercise 3.2. Show that a graph is 3-critical if and only if it is an odd cycle. It is 

clear that any k-chromatic graph contains a k-critical subgraph. 

Exercise 3.3. If 𝜒(𝐺) = 𝑘, show that G contains at least 𝑘 vertices each of degree 

at least 𝑘 − 1. 

Exercise 3.4. Prove or disprove: If 𝐺 is 𝑘-chromatic, then 𝐺 contains a 𝐾4. 
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